echarts交互组件与数据的视觉映射
交互组件
ECharts 提供了很多交互组件:例组件 legend、标题组件 title、视觉映射组件 visualMap、数据区域缩放组件 dataZoom、时间线组件 timeline。
接下来的内容我们将介绍如何使用数据区域缩放组件 dataZoom。
dataZoom
dataZoom 组件可以实现通过鼠标滚轮滚动,放大缩小图表的功能。
默认情况下 dataZoom 控制 x 轴,即对 x 轴进行数据窗口缩放和数据窗口平移操作。
option = { xAxis: { type: 'value' }, yAxis: { type: 'value' }, dataZoom: [ { // 这个dataZoom组件,默认控制x轴。 type: 'slider', // 这个 dataZoom 组件是 slider 型 dataZoom 组件 start: 10, // 左边在 10% 的位置。 end: 60 // 右边在 60% 的位置。 } ], series: [ { type: 'scatter', // 这是个『散点图』 itemStyle: { opacity: 0.8 }, symbolSize: function (val) { return val[2] * 40; }, data: [["14.616","7.241","0.896"],["3.958","5.701","0.955"],["2.768","8.971","0.669"],["9.051","9.710","0.171"],["14.046","4.182","0.536"],["12.295","1.429","0.962"],["4.417","8.167","0.113"],["0.492","4.771","0.785"],["7.632","2.605","0.645"],["14.242","5.042","0.368"]] } ] }
上面的实例只能拖动 dataZoom 组件来缩小或放大图表。如果想在坐标系内进行拖动,以及用鼠标滚轮(或移动触屏上的两指滑动)进行缩放,那么需要 再再加上一个 inside 型的 dataZoom 组件。
在以上实例基础上我们再增加 type: 'inside' 的配置信息:
option = { ..., dataZoom: [ { // 这个dataZoom组件,默认控制x轴。 type: 'slider', // 这个 dataZoom 组件是 slider 型 dataZoom 组件 start: 10, // 左边在 10% 的位置。 end: 60 // 右边在 60% 的位置。 }, { // 这个dataZoom组件,也控制x轴。 type: 'inside', // 这个 dataZoom 组件是 inside 型 dataZoom 组件 start: 10, // 左边在 10% 的位置。 end: 60 // 右边在 60% 的位置。 } ], ... }
当然我们可以通过 dataZoom.xAxisIndex 或 dataZoom.yAxisIndex 来指定 dataZoom 控制哪个或哪些数轴。
var data1 = []; var data2 = []; var data3 = []; var random = function (max) { return (Math.random() * max).toFixed(3); }; for (var i = 0; i < 500; i++) { data1.push([random(15), random(10), random(1)]); data2.push([random(10), random(10), random(1)]); data3.push([random(15), random(10), random(1)]); } option = { animation: false, legend: { data: ['scatter', 'scatter2', 'scatter3'] }, tooltip: { }, xAxis: { type: 'value', min: 'dataMin', max: 'dataMax', splitLine: { show: true } }, yAxis: { type: 'value', min: 'dataMin', max: 'dataMax', splitLine: { show: true } }, dataZoom: [ { type: 'slider', show: true, xAxisIndex: [0], start: 1, end: 35 }, { type: 'slider', show: true, yAxisIndex: [0], left: '93%', start: 29, end: 36 }, { type: 'inside', xAxisIndex: [0], start: 1, end: 35 }, { type: 'inside', yAxisIndex: [0], start: 29, end: 36 } ], series: [ { name: 'scatter', type: 'scatter', itemStyle: { normal: { opacity: 0.8 } }, symbolSize: function (val) { return val[2] * 40; }, data: data1 }, { name: 'scatter2', type: 'scatter', itemStyle: { normal: { opacity: 0.8 } }, symbolSize: function (val) { return val[2] * 40; }, data: data2 }, { name: 'scatter3', type: 'scatter', itemStyle: { normal: { opacity: 0.8, } }, symbolSize: function (val) { return val[2] * 40; }, data: data3 } ] }
数据的视觉映射
数据可视化简单来讲就是将数据用图表的形式来展示,专业的表达方式就是数据到视觉元素的映射过程。
ECharts 的每种图表本身就内置了这种映射过程,我们之前学习到的柱形图就是将数据映射到长度。
此外,ECharts 还提供了 visualMap 组件 来提供通用的视觉映射。visualMap 组件中可以使用的视觉元素有:
- 图形类别(symbol)
- 图形大小(symbolSize)
- 颜色(color)
- 透明度(opacity)
- 颜色透明度(colorAlpha)
- 颜色明暗度(colorLightness)
- 颜色饱和度(colorSaturation)
- 色调(colorHue)
一、数据和维度
ECharts 中的数据,一般存放于 series.data 中。
不同的图表类型,数据格式有所不一样,但是他们的共同特点就都是数据项(dataItem) 的集合。每个数据项含有 数据值(value) 和其他信息(可选)。每个数据值,可以是单一的数值(一维)或者一个数组(多维)。
series.data 最常见的形式 是线性表,即一个普通数组:
series: { data: [ { // 这里每一个项就是数据项(dataItem) value: 2323, // 这是数据项的数据值(value) itemStyle: {...} }, 1212, // 也可以直接是 dataItem 的 value,这更常见。 2323, // 每个 value 都是『一维』的。 4343, 3434 ] } series: { data: [ { // 这里每一个项就是数据项(dataItem) value: [3434, 129, '圣马力诺'], // 这是数据项的数据值(value) itemStyle: {...} }, [1212, 5454, '梵蒂冈'], // 也可以直接是 dataItem 的 value,这更常见。 [2323, 3223, '瑙鲁'], // 每个 value 都是『三维』的,每列是一个维度。 [4343, 23, '图瓦卢'] // 假如是『气泡图』,常见第一维度映射到x轴, // 第二维度映射到y轴, // 第三维度映射到气泡半径(symbolSize) ] }
在图表中,往往默认把 value 的前一两个维度进行映射,比如取第一个维度映射到x轴,取第二个维度映射到y轴。如果想要把更多的维度展现出来,可以借助 visualMap 。
二、visualMap 组件
visualMap 组件定义了把数据的指定维度映射到对应的视觉元素上。
visualMap 组件可以定义多个,从而可以同时对数据中的多个维度进行视觉映射。
visualMap 组件可以定义为 分段型(visualMapPiecewise) 或 连续型(visualMapContinuous),通过 type 来区分。例如:
option = { visualMap: [ { // 第一个 visualMap 组件 type: 'continuous', // 定义为连续型 visualMap ... }, { // 第二个 visualMap 组件 type: 'piecewise', // 定义为分段型 visualMap ... } ], ... };
分段型视觉映射组件,有三种模式:
- 连续型数据平均分段: 依据 visualMap-piecewise.splitNumber 来自动平均分割成若干块。
- 连续型数据自定义分段: 依据 visualMap-piecewise.pieces 来定义每块范围。
- 离散数据根据类别分段: 类别定义在 visualMap-piecewise.categories 中。
分段型视觉映射组件,展现形式如下图:
实例
<!DOCTYPE html> <html style="height: 100%"> <head> <meta charset="utf-8"> </head> <body style="height: 100%; margin: 0"> <div id="container" style="height: 100%"></div> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/dist/echarts.min.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts-gl/dist/echarts-gl.min.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts-stat/dist/ecStat.min.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/dist/extension/dataTool.min.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/map/js/china.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/map/js/world.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts/dist/extension/bmap.min.js"></script> <script type="text/javascript"> var dom = document.getElementById("container"); var myChart = echarts.init(dom); var app = {}; option = null; var geoCoordMap = { "海门":[121.15,31.89], "鄂尔多斯":[109.781327,39.608266], "招远":[120.38,37.35], "舟山":[122.207216,29.985295], "齐齐哈尔":[123.97,47.33], "盐城":[120.13,33.38], "赤峰":[118.87,42.28], "青岛":[120.33,36.07], "乳山":[121.52,36.89], "金昌":[102.188043,38.520089], "泉州":[118.58,24.93], "莱西":[120.53,36.86], "日照":[119.46,35.42], "胶南":[119.97,35.88], "南通":[121.05,32.08], "拉萨":[91.11,29.97], "云浮":[112.02,22.93], "梅州":[116.1,24.55], "文登":[122.05,37.2], "上海":[121.48,31.22], "攀枝花":[101.718637,26.582347], "威海":[122.1,37.5], "承德":[117.93,40.97], "厦门":[118.1,24.46], "汕尾":[115.375279,22.786211], "潮州":[116.63,23.68], "丹东":[124.37,40.13], "太仓":[121.1,31.45], "曲靖":[103.79,25.51], "烟台":[121.39,37.52], "福州":[119.3,26.08], "瓦房店":[121.979603,39.627114], "即墨":[120.45,36.38], "抚顺":[123.97,41.97], "玉溪":[102.52,24.35], "张家口":[114.87,40.82], "阳泉":[113.57,37.85], "莱州":[119.942327,37.177017], "湖州":[120.1,30.86], "汕头":[116.69,23.39], "昆山":[120.95,31.39], "宁波":[121.56,29.86], "湛江":[110.359377,21.270708], "揭阳":[116.35,23.55], "荣成":[122.41,37.16], "连云港":[119.16,34.59], "葫芦岛":[120.836932,40.711052], "常熟":[120.74,31.64], "东莞":[113.75,23.04], "河源":[114.68,23.73], "淮安":[119.15,33.5], "泰州":[119.9,32.49], "南宁":[108.33,22.84], "营口":[122.18,40.65], "惠州":[114.4,23.09], "江阴":[120.26,31.91], "蓬莱":[120.75,37.8], "韶关":[113.62,24.84], "嘉峪关":[98.289152,39.77313], "广州":[113.23,23.16], "延安":[109.47,36.6], "太原":[112.53,37.87], "清远":[113.01,23.7], "中山":[113.38,22.52], "昆明":[102.73,25.04], "寿光":[118.73,36.86], "盘锦":[122.070714,41.119997], "长治":[113.08,36.18], "深圳":[114.07,22.62], "珠海":[113.52,22.3], "宿迁":[118.3,33.96], "咸阳":[108.72,34.36], "铜川":[109.11,35.09], "平度":[119.97,36.77], "佛山":[113.11,23.05], "海口":[110.35,20.02], "江门":[113.06,22.61], "章丘":[117.53,36.72], "肇庆":[112.44,23.05], "大连":[121.62,38.92], "临汾":[111.5,36.08], "吴江":[120.63,31.16], "石嘴山":[106.39,39.04], "沈阳":[123.38,41.8], "苏州":[120.62,31.32], "茂名":[110.88,21.68], "嘉兴":[120.76,30.77], "长春":[125.35,43.88], "胶州":[120.03336,36.264622], "银川":[106.27,38.47], "张家港":[120.555821,31.875428], "三门峡":[111.19,34.76], "锦州":[121.15,41.13], "南昌":[115.89,28.68], "柳州":[109.4,24.33], "三亚":[109.511909,18.252847], "自贡":[104.778442,29.33903], "吉林":[126.57,43.87], "阳江":[111.95,21.85], "泸州":[105.39,28.91], "西宁":[101.74,36.56], "宜宾":[104.56,29.77], "呼和浩特":[111.65,40.82], "成都":[104.06,30.67], "大同":[113.3,40.12], "镇江":[119.44,32.2], "桂林":[110.28,25.29], "张家界":[110.479191,29.117096], "宜兴":[119.82,31.36], "北海":[109.12,21.49], "西安":[108.95,34.27], "金坛":[119.56,31.74], "东营":[118.49,37.46], "牡丹江":[129.58,44.6], "遵义":[106.9,27.7], "绍兴":[120.58,30.01], "扬州":[119.42,32.39], "常州":[119.95,31.79], "潍坊":[119.1,36.62], "重庆":[106.54,29.59], "台州":[121.420757,28.656386], "南京":[118.78,32.04], "滨州":[118.03,37.36], "贵阳":[106.71,26.57], "无锡":[120.29,31.59], "本溪":[123.73,41.3], "克拉玛依":[84.77,45.59], "渭南":[109.5,34.52], "马鞍山":[118.48,31.56], "宝鸡":[107.15,34.38], "焦作":[113.21,35.24], "句容":[119.16,31.95], "北京":[116.46,39.92], "徐州":[117.2,34.26], "衡水":[115.72,37.72], "包头":[110,40.58], "绵阳":[104.73,31.48], "乌鲁木齐":[87.68,43.77], "枣庄":[117.57,34.86], "杭州":[120.19,30.26], "淄博":[118.05,36.78], "鞍山":[122.85,41.12], "溧阳":[119.48,31.43], "库尔勒":[86.06,41.68], "安阳":[114.35,36.1], "开封":[114.35,34.79], "济南":[117,36.65], "德阳":[104.37,31.13], "温州":[120.65,28.01], "九江":[115.97,29.71], "邯郸":[114.47,36.6], "临安":[119.72,30.23], "兰州":[103.73,36.03], "沧州":[116.83,38.33], "临沂":[118.35,35.05], "南充":[106.110698,30.837793], "天津":[117.2,39.13], "富阳":[119.95,30.07], "泰安":[117.13,36.18], "诸暨":[120.23,29.71], "郑州":[113.65,34.76], "哈尔滨":[126.63,45.75], "聊城":[115.97,36.45], "芜湖":[118.38,31.33], "唐山":[118.02,39.63], "平顶山":[113.29,33.75], "邢台":[114.48,37.05], "德州":[116.29,37.45], "济宁":[116.59,35.38], "荆州":[112.239741,30.335165], "宜昌":[111.3,30.7], "义乌":[120.06,29.32], "丽水":[119.92,28.45], "洛阳":[112.44,34.7], "秦皇岛":[119.57,39.95], "株洲":[113.16,27.83], "石家庄":[114.48,38.03], "莱芜":[117.67,36.19], "常德":[111.69,29.05], "保定":[115.48,38.85], "湘潭":[112.91,27.87], "金华":[119.64,29.12], "岳阳":[113.09,29.37], "长沙":[113,28.21], "衢州":[118.88,28.97], "廊坊":[116.7,39.53], "菏泽":[115.480656,35.23375], "合肥":[117.27,31.86], "武汉":[114.31,30.52], "大庆":[125.03,46.58] }; var convertData = function (data) { var res = []; for (var i = 0; i < data.length; i++) { var geoCoord = geoCoordMap[data[i].name]; if (geoCoord) { res.push(geoCoord.concat(data[i].value)); } } return res; }; option = { backgroundColor: '#404a59', title: { text: '全国主要城市空气质量', subtext: 'data from PM25.in', sublink: 'http://www.pm25.in', left: 'center', textStyle: { color: '#fff' } }, tooltip: { trigger: 'item' }, legend: { orient: 'vertical', top: 'bottom', left: 'right', data:['pm2.5'], textStyle: { color: '#fff' } }, visualMap: { min: 0, max: 300, splitNumber: 5, color: ['#d94e5d','#eac736','#50a3ba'], textStyle: { color: '#fff' } }, geo: { map: 'china', label: { emphasis: { show: false } }, itemStyle: { normal: { areaColor: '#323c48', borderColor: '#111' }, emphasis: { areaColor: '#2a333d' } } }, series: [ { name: 'pm2.5', type: 'scatter', coordinateSystem: 'geo', data: convertData([ {name: "海门", value: 9}, {name: "鄂尔多斯", value: 12}, {name: "招远", value: 12}, {name: "舟山", value: 12}, {name: "齐齐哈尔", value: 14}, {name: "盐城", value: 15}, {name: "赤峰", value: 16}, {name: "青岛", value: 18}, {name: "乳山", value: 18}, {name: "金昌", value: 19}, {name: "泉州", value: 21}, {name: "莱西", value: 21}, {name: "日照", value: 21}, {name: "胶南", value: 22}, {name: "南通", value: 23}, {name: "拉萨", value: 24}, {name: "云浮", value: 24}, {name: "梅州", value: 25}, {name: "文登", value: 25}, {name: "上海", value: 25}, {name: "攀枝花", value: 25}, {name: "威海", value: 25}, {name: "承德", value: 25}, {name: "厦门", value: 26}, {name: "汕尾", value: 26}, {name: "潮州", value: 26}, {name: "丹东", value: 27}, {name: "太仓", value: 27}, {name: "曲靖", value: 27}, {name: "烟台", value: 28}, {name: "福州", value: 29}, {name: "瓦房店", value: 30}, {name: "即墨", value: 30}, {name: "抚顺", value: 31}, {name: "玉溪", value: 31}, {name: "张家口", value: 31}, {name: "阳泉", value: 31}, {name: "莱州", value: 32}, {name: "湖州", value: 32}, {name: "汕头", value: 32}, {name: "昆山", value: 33}, {name: "宁波", value: 33}, {name: "湛江", value: 33}, {name: "揭阳", value: 34}, {name: "荣成", value: 34}, {name: "连云港", value: 35}, {name: "葫芦岛", value: 35}, {name: "常熟", value: 36}, {name: "东莞", value: 36}, {name: "河源", value: 36}, {name: "淮安", value: 36}, {name: "泰州", value: 36}, {name: "南宁", value: 37}, {name: "营口", value: 37}, {name: "惠州", value: 37}, {name: "江阴", value: 37}, {name: "蓬莱", value: 37}, {name: "韶关", value: 38}, {name: "嘉峪关", value: 38}, {name: "广州", value: 38}, {name: "延安", value: 38}, {name: "太原", value: 39}, {name: "清远", value: 39}, {name: "中山", value: 39}, {name: "昆明", value: 39}, {name: "寿光", value: 40}, {name: "盘锦", value: 40}, {name: "长治", value: 41}, {name: "深圳", value: 41}, {name: "珠海", value: 42}, {name: "宿迁", value: 43}, {name: "咸阳", value: 43}, {name: "铜川", value: 44}, {name: "平度", value: 44}, {name: "佛山", value: 44}, {name: "海口", value: 44}, {name: "江门", value: 45}, {name: "章丘", value: 45}, {name: "肇庆", value: 46}, {name: "大连", value: 47}, {name: "临汾", value: 47}, {name: "吴江", value: 47}, {name: "石嘴山", value: 49}, {name: "沈阳", value: 50}, {name: "苏州", value: 50}, {name: "茂名", value: 50}, {name: "嘉兴", value: 51}, {name: "长春", value: 51}, {name: "胶州", value: 52}, {name: "银川", value: 52}, {name: "张家港", value: 52}, {name: "三门峡", value: 53}, {name: "锦州", value: 54}, {name: "南昌", value: 54}, {name: "柳州", value: 54}, {name: "三亚", value: 54}, {name: "自贡", value: 56}, {name: "吉林", value: 56}, {name: "阳江", value: 57}, {name: "泸州", value: 57}, {name: "西宁", value: 57}, {name: "宜宾", value: 58}, {name: "呼和浩特", value: 58}, {name: "成都", value: 58}, {name: "大同", value: 58}, {name: "镇江", value: 59}, {name: "桂林", value: 59}, {name: "张家界", value: 59}, {name: "宜兴", value: 59}, {name: "北海", value: 60}, {name: "西安", value: 61}, {name: "金坛", value: 62}, {name: "东营", value: 62}, {name: "牡丹江", value: 63}, {name: "遵义", value: 63}, {name: "绍兴", value: 63}, {name: "扬州", value: 64}, {name: "常州", value: 64}, {name: "潍坊", value: 65}, {name: "重庆", value: 66}, {name: "台州", value: 67}, {name: "南京", value: 67}, {name: "滨州", value: 70}, {name: "贵阳", value: 71}, {name: "无锡", value: 71}, {name: "本溪", value: 71}, {name: "克拉玛依", value: 72}, {name: "渭南", value: 72}, {name: "马鞍山", value: 72}, {name: "宝鸡", value: 72}, {name: "焦作", value: 75}, {name: "句容", value: 75}, {name: "北京", value: 79}, {name: "徐州", value: 79}, {name: "衡水", value: 80}, {name: "包头", value: 80}, {name: "绵阳", value: 80}, {name: "乌鲁木齐", value: 84}, {name: "枣庄", value: 84}, {name: "杭州", value: 84}, {name: "淄博", value: 85}, {name: "鞍山", value: 86}, {name: "溧阳", value: 86}, {name: "库尔勒", value: 86}, {name: "安阳", value: 90}, {name: "开封", value: 90}, {name: "济南", value: 92}, {name: "德阳", value: 93}, {name: "温州", value: 95}, {name: "九江", value: 96}, {name: "邯郸", value: 98}, {name: "临安", value: 99}, {name: "兰州", value: 99}, {name: "沧州", value: 100}, {name: "临沂", value: 103}, {name: "南充", value: 104}, {name: "天津", value: 105}, {name: "富阳", value: 106}, {name: "泰安", value: 112}, {name: "诸暨", value: 112}, {name: "郑州", value: 113}, {name: "哈尔滨", value: 114}, {name: "聊城", value: 116}, {name: "芜湖", value: 117}, {name: "唐山", value: 119}, {name: "平顶山", value: 119}, {name: "邢台", value: 119}, {name: "德州", value: 120}, {name: "济宁", value: 120}, {name: "荆州", value: 127}, {name: "宜昌", value: 130}, {name: "义乌", value: 132}, {name: "丽水", value: 133}, {name: "洛阳", value: 134}, {name: "秦皇岛", value: 136}, {name: "株洲", value: 143}, {name: "石家庄", value: 147}, {name: "莱芜", value: 148}, {name: "常德", value: 152}, {name: "保定", value: 153}, {name: "湘潭", value: 154}, {name: "金华", value: 157}, {name: "岳阳", value: 169}, {name: "长沙", value: 175}, {name: "衢州", value: 177}, {name: "廊坊", value: 193}, {name: "菏泽", value: 194}, {name: "合肥", value: 229}, {name: "武汉", value: 273}, {name: "大庆", value: 279} ]), symbolSize: 12, label: { normal: { show: false }, emphasis: { show: false } }, itemStyle: { emphasis: { borderColor: '#fff', borderWidth: 1 } } } ] }; if (option && typeof option === "object") { myChart.setOption(option, true); } </script> </body> </html>
三、视觉映射方式的配置
visualMap 中可以指定数据的指定维度映射到对应的视觉元素上。
实例 1
option = { visualMap: [ { type: 'piecewise' min: 0, max: 5000, dimension: 3, // series.data 的第四个维度(即 value[3])被映射 seriesIndex: 4, // 对第四个系列进行映射。 inRange: { // 选中范围中的视觉配置 color: ['blue', '#121122', 'red'], // 定义了图形颜色映射的颜色列表, // 数据最小值映射到'blue'上, // 最大值映射到'red'上, // 其余自动线性计算。 symbolSize: [30, 100] // 定义了图形尺寸的映射范围, // 数据最小值映射到30上, // 最大值映射到100上, // 其余自动线性计算。 }, outOfRange: { // 选中范围外的视觉配置 symbolSize: [30, 100] } }, ... ] };
实例 2
option = { visualMap: [ { ..., inRange: { // 选中范围中的视觉配置 colorLightness: [0.2, 1], // 映射到明暗度上。也就是对本来的颜色进行明暗度处理。 // 本来的颜色可能是从全局色板中选取的颜色,visualMap组件并不关心。 symbolSize: [30, 100] }, ... }, ... ] };
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
相关文章
ionic js 模型 $ionicModal 可以遮住用户主界面的内容框
这篇文章主要介绍了ionic js 模型 $ionicModal 可以遮住用户主界面的内容框的相关资料,需要的朋友可以参考下2016-06-06JavaScript实现焦点进入文本框内关闭输入法的核心代码
这篇文章给大家分享js实现焦点进入文本框内关闭输入法,代码简单易懂,非常不错,具有参考借鉴价值,需要的朋友参考下吧2017-09-09
最新评论