IDEA 中使用 Hudi的示例代码
环境准备
创建 Maven 项目创建服务器远程连接
Tools------Delployment-----Browse Remote Host
设置如下内容:
在这里输入服务器的账号和密码
点击Test Connection,提示Successfully的话,就说明配置成功。
复制Hadoop的 core-site.xml、hdfs-site.xml 以及 log4j.properties 三个文件复制到resources文件夹下。
设置 log4j.properties 为打印警告异常信息:
log4j.rootCategory=WARN, console
4.添加 pom.xml 文件
<repositories> <repository> <id>aliyun</id> <url>http://maven.aliyun.com/nexus/content/groups/public/</url> </repository> <repository> <id>cloudera</id> <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url> </repository> <repository> <id>jboss</id> <url>http://repository.jboss.com/nexus/content/groups/public</url> </repository> </repositories> <properties> <scala.version>2.12.10</scala.version> <scala.binary.version>2.12</scala.binary.version> <spark.version>3.0.0</spark.version> <hadoop.version>2.7.3</hadoop.version> <hudi.version>0.9.0</hudi.version> </properties> <dependencies> <!-- 依赖Scala语言 --> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>${scala.version}</version> </dependency> <!-- Spark Core 依赖 --> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_${scala.binary.version}</artifactId> <version>${spark.version}</version> </dependency> <!-- Spark SQL 依赖 --> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_${scala.binary.version}</artifactId> <version>${spark.version}</version> </dependency> <!-- Hadoop Client 依赖 --> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>${hadoop.version}</version> </dependency> <!-- hudi-spark3 --> <dependency> <groupId>org.apache.hudi</groupId> <artifactId>hudi-spark3-bundle_2.12</artifactId> <version>${hudi.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-avro_2.12</artifactId> <version>${spark.version}</version> </dependency> </dependencies> <build> <outputDirectory>target/classes</outputDirectory> <testOutputDirectory>target/test-classes</testOutputDirectory> <resources> <resource> <directory>${project.basedir}/src/main/resources</directory> </resource> </resources> <!-- Maven 编译的插件 --> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.0</version> <configuration> <source>1.8</source> <target>1.8</target> <encoding>UTF-8</encoding> </configuration> </plugin> <plugin> <groupId>net.alchim31.maven</groupId> <artifactId>scala-maven-plugin</artifactId> <version>3.2.0</version> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> </execution> </executions> </plugin> </plugins> </build>
要注释掉创建项目时的生成的下面的代码,不然依赖一直报错:
<!-- <properties>-->
<!-- <maven.compiler.source>8</maven.compiler.source>-->
<!-- <maven.compiler.target>8</maven.compiler.target>-->
<!-- </properties>-->
代码结构:
核心代码
import org.apache.hudi.QuickstartUtils.DataGenerator import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession} /** * Hudi 数据湖的框架,基于Spark计算引擎,对数据进行CURD操作,使用官方模拟赛生成的出租车出行数据 * * 任务一:模拟数据,插入Hudi表,采用COW模式 * 任务二:快照方式查询(Snapshot Query)数据,采用DSL方式 * 任务三:更新(Update)数据 * 任务四:增量查询(Incremental Query)数据,采用SQL方式 * 任务五:删除(Delete)数据 */ object HudiSparkDemo { /** * 官方案例:模拟产生数据,插入Hudi表,表的类型为COW */ def insertData(spark: SparkSession, table: String, path: String): Unit = { import spark.implicits._ // 第1步、模拟乘车数据 import org.apache.hudi.QuickstartUtils._ val dataGen: DataGenerator = new DataGenerator() val inserts = convertToStringList(dataGen.generateInserts(100)) import scala.collection.JavaConverters._ val insertDF: DataFrame = spark.read.json( spark.sparkContext.parallelize(inserts.asScala, 2).toDS() ) // insertDF.printSchema() // insertDF.show(10, truncate = false) //第二步: 插入数据到Hudi表 import org.apache.hudi.DataSourceWriteOptions._ import org.apache.hudi.config.HoodieWriteConfig._ insertDF.write .mode(SaveMode.Append) .format("hudi") .option("hoodie.insert.shuffle.parallelism", 2) .option("hoodie.insert.shuffle.parallelism", 2) //Hudi表的属性设置 .option(PRECOMBINE_FIELD.key(), "ts") .option(RECORDKEY_FIELD.key(), "uuid") .option(PARTITIONPATH_FIELD.key(), "partitionpath") .option(TBL_NAME.key(), table) .save(path) } /** * 采用Snapshot Query快照方式查询表的数据 */ def queryData(spark: SparkSession, path: String): Unit = { import spark.implicits._ val tripsDF: DataFrame = spark.read.format("hudi").load(path) // tripsDF.printSchema() // tripsDF.show(10, truncate = false) //查询费用大于10,小于50的乘车数据 tripsDF .filter($"fare" >= 20 && $"fare" <=50) .select($"driver", $"rider", $"fare", $"begin_lat", $"begin_lon", $"partitionpath", $"_hoodie_commit_time") .orderBy($"fare".desc, $"_hoodie_commit_time".desc) .show(20, truncate = false) } def queryDataByTime(spark: SparkSession, path: String):Unit = { import org.apache.spark.sql.functions._ //方式一:指定字符串,按照日期时间过滤获取数据 val df1 = spark.read .format("hudi") .option("as.of.instant", "20220610160908") .load(path) .sort(col("_hoodie_commit_time").desc) df1.printSchema() df1.show(numRows = 5, truncate = false) //方式二:指定字符串,按照日期时间过滤获取数据 val df2 = spark.read .format("hudi") .option("as.of.instant", "2022-06-10 16:09:08") .load(path) .sort(col("_hoodie_commit_time").desc) df2.printSchema() df2.show(numRows = 5, truncate = false) } /** * 将DataGenerator作为参数传入生成数据 */ def insertData(spark: SparkSession, table: String, path: String, dataGen: DataGenerator): Unit = { import spark.implicits._ // 第1步、模拟乘车数据 import org.apache.hudi.QuickstartUtils._ val inserts = convertToStringList(dataGen.generateInserts(100)) import scala.collection.JavaConverters._ val insertDF: DataFrame = spark.read.json( spark.sparkContext.parallelize(inserts.asScala, 2).toDS() ) // insertDF.printSchema() // insertDF.show(10, truncate = false) //第二步: 插入数据到Hudi表 import org.apache.hudi.DataSourceWriteOptions._ import org.apache.hudi.config.HoodieWriteConfig._ insertDF.write //更换为Overwrite模式 .mode(SaveMode.Overwrite) .format("hudi") .option("hoodie.insert.shuffle.parallelism", 2) .option("hoodie.insert.shuffle.parallelism", 2) //Hudi表的属性设置 .option(PRECOMBINE_FIELD.key(), "ts") .option(RECORDKEY_FIELD.key(), "uuid") .option(PARTITIONPATH_FIELD.key(), "partitionpath") .option(TBL_NAME.key(), table) .save(path) } /** * 模拟产生Hudi表中更新数据,将其更新到Hudi表中 */ def updateData(spark: SparkSession, table: String, path: String, dataGen: DataGenerator):Unit = { import spark.implicits._ // 第1步、模拟乘车数据 import org.apache.hudi.QuickstartUtils._ //产生更新的数据 val updates = convertToStringList(dataGen.generateUpdates(100)) import scala.collection.JavaConverters._ val updateDF: DataFrame = spark.read.json( spark.sparkContext.parallelize(updates.asScala, 2).toDS() ) // TOOD: 第2步、插入数据到Hudi表 import org.apache.hudi.DataSourceWriteOptions._ import org.apache.hudi.config.HoodieWriteConfig._ updateDF.write //追加模式 .mode(SaveMode.Append) .format("hudi") .option("hoodie.insert.shuffle.parallelism", "2") .option("hoodie.upsert.shuffle.parallelism", "2") // Hudi 表的属性值设置 .option(PRECOMBINE_FIELD.key(), "ts") .option(RECORDKEY_FIELD.key(), "uuid") .option(PARTITIONPATH_FIELD.key(), "partitionpath") .option(TBL_NAME.key(), table) .save(path) } /** * 采用Incremental Query增量方式查询数据,需要指定时间戳 */ def incrementalQueryData(spark: SparkSession, path: String): Unit = { import spark.implicits._ // 第1步、加载Hudi表数据,获取commit time时间,作为增量查询数据阈值 import org.apache.hudi.DataSourceReadOptions._ spark.read .format("hudi") .load(path) .createOrReplaceTempView("view_temp_hudi_trips") val commits: Array[String] = spark .sql( """ |select | distinct(_hoodie_commit_time) as commitTime |from | view_temp_hudi_trips |order by | commitTime DESC |""".stripMargin ) .map(row => row.getString(0)) .take(50) val beginTime = commits(commits.length - 1) // commit time we are interested in println(s"beginTime = ${beginTime}") // 第2步、设置Hudi数据CommitTime时间阈值,进行增量数据查询 val tripsIncrementalDF = spark.read .format("hudi") // 设置查询数据模式为:incremental,增量读取 .option(QUERY_TYPE.key(), QUERY_TYPE_INCREMENTAL_OPT_VAL) // 设置增量读取数据时开始时间 .option(BEGIN_INSTANTTIME.key(), beginTime) .load(path) // 第3步、将增量查询数据注册为临时视图,查询费用大于20数据 tripsIncrementalDF.createOrReplaceTempView("hudi_trips_incremental") spark .sql( """ |select | `_hoodie_commit_time`, fare, begin_lon, begin_lat, ts |from | hudi_trips_incremental |where | fare > 20.0 |""".stripMargin ) .show(10, truncate = false) } /** * 删除Hudi表数据,依据主键uuid进行删除,如果是分区表,指定分区路径 */ def deleteData(spark: SparkSession, table: String, path: String): Unit = { import spark.implicits._ // 第1步、加载Hudi表数据,获取条目数 val tripsDF: DataFrame = spark.read.format("hudi").load(path) println(s"Raw Count = ${tripsDF.count()}") // 第2步、模拟要删除的数据,从Hudi中加载数据,获取几条数据,转换为要删除数据集合 val dataframe = tripsDF.limit(2).select($"uuid", $"partitionpath") import org.apache.hudi.QuickstartUtils._ val dataGenerator = new DataGenerator() val deletes = dataGenerator.generateDeletes(dataframe.collectAsList()) import scala.collection.JavaConverters._ val deleteDF = spark.read.json(spark.sparkContext.parallelize(deletes.asScala, 2)) // 第3步、保存数据到Hudi表中,设置操作类型:DELETE import org.apache.hudi.DataSourceWriteOptions._ import org.apache.hudi.config.HoodieWriteConfig._ deleteDF.write .mode(SaveMode.Append) .format("hudi") .option("hoodie.insert.shuffle.parallelism", "2") .option("hoodie.upsert.shuffle.parallelism", "2") // 设置数据操作类型为delete,默认值为upsert .option(OPERATION.key(), "delete") .option(PRECOMBINE_FIELD.key(), "ts") .option(RECORDKEY_FIELD.key(), "uuid") .option(PARTITIONPATH_FIELD.key(), "partitionpath") .option(TBL_NAME.key(), table) .save(path) // 第4步、再次加载Hudi表数据,统计条目数,查看是否减少2条数据 val hudiDF: DataFrame = spark.read.format("hudi").load(path) println(s"Delete After Count = ${hudiDF.count()}") } def main(args: Array[String]): Unit = { System.setProperty("HADOOP_USER_NAME","hty") //创建SparkSession示例对象,设置属性 val spark: SparkSession = { SparkSession.builder() .appName(this.getClass.getSimpleName.stripSuffix("$")) .master("local[2]") // 设置序列化方式:Kryo .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer") .getOrCreate() } //定义变量:表名称、保存路径 val tableName: String = "tbl_trips_cow" val tablePath: String = "/hudi_warehouse/tbl_trips_cow" //构建数据生成器,模拟产生业务数据 import org.apache.hudi.QuickstartUtils._ //任务一:模拟数据,插入Hudi表,采用COW模式 //insertData(spark, tableName, tablePath) //任务二:快照方式查询(Snapshot Query)数据,采用DSL方式 //queryData(spark, tablePath) //queryDataByTime(spark, tablePath) // 任务三:更新(Update)数据,第1步、模拟产生数据,第2步、模拟产生数据,针对第1步数据字段值更新, // 第3步、将数据更新到Hudi表中 val dataGen: DataGenerator = new DataGenerator() //insertData(spark, tableName, tablePath, dataGen) //updateData(spark, tableName, tablePath, dataGen) //任务四:增量查询(Incremental Query)数据,采用SQL方式 //incrementalQueryData(spark, tablePath) //任务五:删除(Delete)数据 deleteData(spark, tableName,tablePath) //应用结束,关闭资源 spark.stop() } }
测试
执行 insertData(spark, tableName, tablePath) 方法后对其用快照查询的方式进行查询:
queryData(spark, tablePath)
增量查询(Incremental Query)数据:
incrementalQueryData(spark, tablePath)
参考资料
https://www.bilibili.com/video/BV1sb4y1n7hK?p=21&vd_source=e21134e00867aeadc3c6b37bb38b9eee
到此这篇关于IDEA 中使用 Hudi的文章就介绍到这了,更多相关IDEA 使用 Hudi内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
SpringBoot整合Drools规则引擎动态生成业务规则的实现
本文主要介绍了SpringBoot整合Drools规则引擎动态生成业务规则的实现,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下2021-12-12解决Idea查看源代码警告Library source does not mat
在使用IDEA开发时,遇到第三方jar包中的源代码和字节码不一致的问题,会导致无法正确打断点进行调试,这通常是因为jar包更新后源代码没有同步更新造成的,解决方法是删除旧的jar包,通过Maven重新下载或手动下载最新的源代码包,确保IDE中的源码与字节码版本一致2024-10-10windows10 JDK安装及配置环境变量与Eclipse安装教程
这篇文章主要介绍了windows10 JDK安装及配置环境变量与Eclipse安装,本文图文并茂给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下2019-10-10
最新评论