Python中OpenCV Tutorials 20  高动态范围成像的实现步骤

 更新时间:2022年06月16日 11:43:08   作者:Detection  
这篇文章主要介绍了OpenCV Tutorials 20 - 高动态范围成像,本文还给大家展示了一种称为曝光融合的替代方法,它可以产生低动态范围的图像,需要的朋友可以参考下

高动态范围成像

一、引言

如今,大多数数字图像和成像设备每通道使用 8 位整数表示灰度,因此将设备的动态范围限制在两个数量级(实际上是 256 级),而人眼可以适应变化十个数量级的照明条件。当我们拍摄真实世界场景的照片时,明亮区域可能曝光过度,而黑暗区域可能曝光不足,因此我们无法使用单次曝光捕捉所有细节。 HDR 成像适用于每通道使用超过 8 位(通常为 32 位浮点值)的图像,允许更宽的动态范围。获取 HDR 图像的方法有很多种,但最常见的一种是使用以不同曝光值拍摄的场景照片。要结合这些曝光,了解相机的响应函数以及估计它的算法很有用。混合 HDR 图像后,必须将其转换回 8 位才能在普通显示器上查看。这个过程称为色调映射。当场景或相机的对象在镜头之间移动时,会出现额外的复杂性,因为应该配准和对齐具有不同曝光的图像。在本教程中,我们将展示如何从曝光序列中生成和显示 HDR 图像。在我们的例子中,图像已经对齐并且没有移动对象。我们还展示了一种称为曝光融合的替代方法,它可以产生低动态范围的图像。 HDR 管道的每个步骤都可以使用不同的算法来实现,因此请查看参考手册以了解所有这些。

二、曝光序列

download.png

三、代码演示

from __future__ import print_function
from __future__ import division
import cv2 as cv
import numpy as np
import argparse
import os
def cv_show(name, img):
    cv.imshow(name, img)
    cv.waitKey(0)
    cv.destroyAllWindows()
def compare(imgs):
  #  for i in range(len(imgs)):
 #       imgs[i][:,-3:-1,:] = [255,255,255]
    res = np.hstack(imgs)
    cv_show('Compare', res)
def loadExposureSeq(path):
    images = []
    times = []
    with open(os.path.join(path, 'list.txt')) as f:
        content = f.readlines()
    for line in content:
        tokens = line.split()
        images.append(cv.imread(os.path.join(path, tokens[0])))
        # 便于之后的逆CRF操作
        times.append(1 / float(tokens[1]))
    return images, np.asarray(times, dtype=np.float32)
# jupyter 难以手动输入参数,故使用绝对路径
#parser = argparse.ArgumentParser(description='Code for High Dynamic Range Imaging tutorial.')
# parser.add_argument('--input', type=str, help='Path to the directory that contains images and exposure times.')
# args = parser.parse_args()
# if not args.input:
#     parser.print_help()
#     exit(0)
# images, times = loadExposureSeq(args.input)
images, times = loadExposureSeq('exposures/')
calibrate = cv.createCalibrateDebevec()
response = calibrate.process(images, times)
merge_debevec = cv.createMergeDebevec()
hdr = merge_debevec.process(images, times, response)
tonemap = cv.createTonemap(2.2)
ldr = tonemap.process(hdr)
merge_mertens = cv.createMergeMertens()
fusion = merge_mertens.process(images)
cv.imwrite('fusion.png', fusion * 255)
cv.imwrite('ldr.png', ldr * 255)
cv.imwrite('hdr.hdr', hdr)
True

四、解释

1. 加载图像和曝光时间

images, times = loadExposureSeq('exposures/')
# 查看数据集中曝光图像个数
len(images)
16

首先我们从用户自定义文件夹中(此处我采用了教程提供的数据集并将其放置到了同目录下便于载入)载入输入图像以及其曝光时间。文件夹中需要包含图像和list.txt文本文件,其中包含了文件名称和反曝光时间

提供的图像数据集的列表如下:

memorial00.png 0.03125

memorial01.png 0.0625

...

memorial15.png 1024

2. 估计相机响应

calibrate = cv.createCalibrateDebevec()
response = calibrate.process(images, times)
  • 用法如下:

cv.createCalibrateDebevec( [, samples[, lambda_[, random]]] ) -> retval

  • 参数含义:
  • samples :number of pixel locations to use
  • lambda :smoothness term weight. Greater values produce smoother results, but can alter the response.
  • random :if true sample pixel locations are chosen at random, otherwise they form a rectangular grid.

很多 HDR 构建算法都需要了解相机响应函数(CRF)。 我们使用一种校准算法来估计所有 256 个像素值的逆 CRF

3. 形成HDR图像

merge_debevec = cv.createMergeDebevec()
# 利用逆CRF形成HDR图像
hdr = merge_debevec.process(images, times, response)
  • 用法如下:

cv.createMergeMertens( [, contrast_weight[, saturation_weight[, exposure_weight]]] ) -> retval

  • 参数含义:
  • contrast_weight :contrast measure weight. See MergeMertens.
  • saturation_weight: saturation measure weight
  • exposure_weight :well-exposedness measure weight

我们使用 Debevec 的加权方案,使用上一项中计算的响应来构建 HDR 图像。

4. 对 HDR 图像进行色调映射

tonemap = cv.createTonemap(2.2)
ldr = tonemap.process(hdr)
cv_show('Result', ldr)
  • 用法如下: cv.createTonemap( [, gamma] ) -> retval
  • 参数含义:
  • gamma :positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma equal to 2.2f is suitable for most displays. Generally gamma > 1 brightens the image and gamma < 1 darkens it.

由于我们想在普通 LDR 显示器上看到我们的结果,我们必须将 HDR 图像映射到 8 位范围,保留大部分细节。 这是色调映射方法的主要目标。 我们使用带有双边滤波的色调映射器,并将 2.2 设置为 gamma 校正的值。

5. 实现曝光融合

merge_mertens = cv.createMergeMertens()
fusion = merge_mertens.process(images)

如果我们不需要 HDR 图像,还有另一种方法可以合并我们的曝光。 这个过程称为曝光融合,并产生不需要伽马校正的 LDR 图像。 它也不使用照片的曝光值。

compare([ldr,fusion])

download.png

左边是对HDR图像直接进行色调映射的结果,只会保留大部分细节,右边图像是使用所有输入图像序列进行图像曝光融合的结果

请注意,HDR 图像不能以一种常见的图像格式存储,因此我们将其保存为 Radiance 图像 (.hdr)。 此外,所有 HDR 成像函数都返回 [0, 1] 范围内的结果,因此我们应该将结果乘以 255。您可以尝试其他色调映射算法:cv::TonemapDrago、cv::TonemapMantiuk 和 cv::TonemapReinhard 您还可以调整 您自己的照片的 HDR 校准和色调映射方法参数。

# 修改gamma使整幅图像变亮
tonemap = cv.createTonemap(10)
ldr = tonemap.process(hdr)
cv_show('Result', ldr)

download.png

五、补充资源

  • Paul E Debevec and Jitendra Malik. Recovering high dynamic range radiance maps from photographs. In ACM SIGGRAPH 2008 classes, page 31. ACM, 2008. [57]
  • Mark A Robertson, Sean Borman, and Robert L Stevenson. Dynamic range improvement through multiple exposures. In Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on, volume 3, pages 159–163. IEEE, 1999. [207]
  • Tom Mertens, Jan Kautz, and Frank Van Reeth. Exposure fusion. In Computer Graphics and Applications, 2007. PG'07. 15th Pacific Conference on, pages 382–390. IEEE, 2007. [170]-range_imaging
  • Recovering High Dynamic Range Radiance Maps from Photographs (webpage) www.pauldebevec.com/Research/HD…

到此这篇关于Python中OpenCV Tutorials 20  高动态范围成像的文章就介绍到这了,更多相关OpenCV高动态范围成像内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python实现暴力匹配算法(字符串匹配)

    Python实现暴力匹配算法(字符串匹配)

    本文主要介绍了Python实现暴力匹配算法,其主要思想是逐个字符地比较文本串和模式串,从文本串的每个可能的起始位置开始,依次检查是否有匹配的子串,下面就来介绍 一下如何实现
    2023-09-09
  • 使用python+whoosh实现全文检索

    使用python+whoosh实现全文检索

    今天小编就为大家分享一篇使用python+whoosh实现全文检索,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • python计算方程式根的方法

    python计算方程式根的方法

    这篇文章主要介绍了python计算方程式根的方法,涉及Python数学运算的相关技巧,需要的朋友可以参考下
    2015-05-05
  • 基于Python函数的作用域规则和闭包(详解)

    基于Python函数的作用域规则和闭包(详解)

    下面小编就为大家分享一篇基于Python函数的作用域规则和闭包详解,希望对大家有所帮助。一起跟随小编过来看看吧
    2017-11-11
  • Python中tell()方法的使用详解

    Python中tell()方法的使用详解

    这篇文章主要介绍了Python中tell()方法的使用详解,是Python入门学习中的基础知识,需要的朋友可以参考下
    2015-05-05
  • django模板语法学习之include示例详解

    django模板语法学习之include示例详解

    写过 Web 程序的都对 include 包含文件很熟悉,那么在 Django,include 又是怎么一个机制呢?下面这篇文章主要给大家介绍了关于django模板语法学习之include的相关资料,需要的朋友可以参考借鉴,下面随着小编来一起学习学习吧。
    2017-12-12
  • python中使用正则表达式的连接符示例代码

    python中使用正则表达式的连接符示例代码

    在正则表达式中,匹配数字或者英文字母的书写非常不方便。因此,正则表达式引入了连接符“-”来定义字符的范围,下面这篇文章主要给大家介绍了关于python中如何使用正则表达式的连接符的相关资料,需要的朋友可以参考下。
    2017-10-10
  • 基于python实现简单网页服务器代码实例

    基于python实现简单网页服务器代码实例

    这篇文章主要介绍了基于python实现简单网页服务器代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-09-09
  • Python如何利用IMAP实现邮箱客户端功能

    Python如何利用IMAP实现邮箱客户端功能

    IMAP是另一种读取电子邮件的协议,IMAP是读取邮件服务器的电子邮件与公布栏信息的方法,也就是说IMAP 允许客户端的邮件程序存取远程的信息,这篇文章主要给大家介绍了关于Python如何利用IMAP实现邮箱客户端功能的相关资料,需要的朋友可以参考下
    2021-09-09
  • 基于python爬虫数据处理(详解)

    基于python爬虫数据处理(详解)

    下面小编就为大家带来一篇基于python爬虫数据处理(详解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-06-06

最新评论