Python读取CSV文件并进行数据可视化绘图

 更新时间:2022年06月16日 17:14:42   投稿:hqx  
这篇文章主要介绍了Python读取CSV文件并进行数据可视化绘图,文章围绕主题基于Python展开CSV文件读取的详细内容介绍,感兴趣的小伙伴可以参考一下

介绍:文件 sitka_weather_07-2018_simple.csv是阿拉斯加州锡特卡2018年1月1日的天气数据,其中包含当天的最高温度和最低温度。数据文件存储与data文件夹下,接下来用Python读取该文件数据,再基于数据进行可视化绘图。(详细细节请看代码注释)

sitka_highs.py

import csv  # 导入csv模块
from datetime import datetime
import matplotlib.pyplot as plt
filename = 'data/sitka_weather_07-2018_simple.csv'
with open(filename) as f:
    reader = csv.reader(f)
    header_row = next(reader)  # 返回文件的下一行,在这便是首行,即文件头
  # for index, column_header in enumerate(header_row):  # 对列表调用了 enumerate()来获取每个元素的索引及其值,方便我们提取需要的数据列
  #     print(index, column_header)
 
    # 从文件中获取最高温度
    dates, highs = [], []
    for row in reader:
        current_date = datetime.strptime(row[2], '%Y-%m-%d')
        high = int(row[5])
        dates.append(current_date)
        highs.append(high)
 
# 根据最高温度绘制图形
plt.style.use('seaborn')
fig, ax = plt.subplots()
ax.plot(dates, highs, c='red')
# 设置图形的格式
ax.set_title("2018年7月每日最高温度", fontproperties="SimHei", fontsize=24)
ax.set_xlabel('', fontproperties="SimHei", fontsize=16)
fig.autofmt_xdate()
ax.set_ylabel("温度(F)", fontproperties="SimHei", fontsize=16)
ax.tick_params(axis='both', which='major', labelsize=16)
plt.show()

运行结果如下:

 设置以上图标后,我们来添加更多的数据,生成一副更复杂的锡特卡天气图。将sitka_weather_2018_simple.csv数据文件置于data文件夹下,该文件包含整年的锡特卡天气数据。

对代码进行修改:

sitka_highs.py

import csv  # 导入csv模块
from datetime import datetime
import matplotlib.pyplot as plt
filename = 'data/sitka_weather_2018_simple.csv'
with open(filename) as f:
    reader = csv.reader(f)
    header_row = next(reader)  # 返回文件的下一行,在这便是首行,即文件头
 
  # for index, column_header in enumerate(header_row):  # 对列表调用了 enumerate()来获取每个元素的索引及其值,方便我们提取需要的数据列
  #     print(index, column_header)
 
    # 从文件中获取最高温度
    dates, highs = [], []
    for row in reader:
        current_date = datetime.strptime(row[2], '%Y-%m-%d')
        high = int(row[5])
        dates.append(current_date)
        highs.append(high)
 
# 根据最高温度绘制图形
plt.style.use('seaborn')
fig, ax = plt.subplots()
ax.plot(dates, highs, c='red')
# 设置图形的格式
ax.set_title("2018年每日最高温度", fontproperties="SimHei", fontsize=24)
ax.set_xlabel('', fontproperties="SimHei", fontsize=16)
fig.autofmt_xdate()
ax.set_ylabel("温度(F)", fontproperties="SimHei", fontsize=16)
ax.tick_params(axis='both', which='major', labelsize=16)
plt.show()

运行结果如下:

代码再改进:虽然上图已经显示了丰富的数据,但是还能再添加最低温度数据,使其更有用

对代码进行修改:

sitka_highs_lows.py

import csv  # 导入csv模块
from datetime import datetime
import matplotlib.pyplot as plt
filename = 'data/sitka_weather_2018_simple.csv'
with open(filename) as f:
    reader = csv.reader(f)
    header_row = next(reader)  # 返回文件的下一行,在这便是首行,即文件头
 
  # for index, column_header in enumerate(header_row):  # 对列表调用了 enumerate()来获取每个元素的索引及其值,方便我们提取需要的数据列
  #     print(index, column_header)
 
    # 从文件中获取日期、最高温度和最低温度
    dates, highs, lows = [], [], []
    for row in reader:
        current_date = datetime.strptime(row[2], '%Y-%m-%d')
        high = int(row[5])
        low = int(row[6])
        dates.append(current_date)
        highs.append(high)
        lows.append(low)
 
# 根据最高温度和最低温度绘制图形
plt.style.use('seaborn')
fig, ax = plt.subplots()
ax.plot(dates, highs, c='red', alpha=0.5)  # alpha指定颜色的透明度,0为完全透明
ax.plot(dates, lows, c='blue', alpha=0.5)
ax.fill_between(dates, highs, lows, facecolor='blue',alpha=0.1)
 
# 设置图形的格式
ax.set_title("2018年每日最高温度", fontproperties="SimHei", fontsize=24)
ax.set_xlabel('', fontproperties="SimHei", fontsize=16)
fig.autofmt_xdate()
ax.set_ylabel("温度(F)", fontproperties="SimHei", fontsize=16)
ax.tick_params(axis='both', which='major', labelsize=16)
plt.show()

运行结果如下:

此外,读取CSV文件过程中,数据可能缺失,程序运行时就会报错甚至崩溃。所有需要在从CSV文件中读取值时执行错误检查代码,对可能的异常进行处理,更换数据文件为:death_valley_2018_simple.csv  ,该文件有缺失值。

对代码进行修改:

 death_valley_highs_lows.py

import csv  # 导入csv模块
from datetime import datetime
import matplotlib.pyplot as plt
filename = 'data/death_valley_2018_simple.csv'
with open(filename) as f:
    reader = csv.reader(f)
    header_row = next(reader)  # 返回文件的下一行,在这便是首行,即文件头
 
  # for index, column_header in enumerate(header_row):  # 对列表调用了 enumerate()来获取每个元素的索引及其值,方便我们提取需要的数据列
  #     print(index, column_header)
 
    # 从文件中获取日期、最高温度和最低温度
    dates, highs, lows = [], [], []
    for row in reader:
        current_date = datetime.strptime(row[2], '%Y-%m-%d')
        try:
            high = int(row[5])
            low = int(row[6])
        except ValueError:
            print(f"Missing data for {current_date}")
        else:
            dates.append(current_date)
            highs.append(high)
            lows.append(low)
 
# 根据最高温度和最低温度绘制图形
plt.style.use('seaborn')
fig, ax = plt.subplots()
ax.plot(dates, highs, c='red', alpha=0.5)  # alpha指定颜色的透明度,0为完全透明
ax.plot(dates, lows, c='blue', alpha=0.5)
ax.fill_between(dates, highs, lows, facecolor='blue',alpha=0.1)
# 设置图形的格式
ax.set_title("2018年每日最高温度和最低气温\n美国加利福利亚死亡谷", fontproperties="SimHei", fontsize=24)
ax.set_xlabel('', fontproperties="SimHei", fontsize=16)
fig.autofmt_xdate()
ax.set_ylabel("温度(F)", fontproperties="SimHei", fontsize=16)
ax.tick_params(axis='both', which='major', labelsize=16)
plt.show()

如果现在运行 death_valley_highs_lows.py,将会发现缺失数据的日期只有一个:

Missing data for 2018-02-18 00:00:00

妥善地处理错误后,代码能够生成图形并忽略缺失数据的那天。运行结果如下:

到此这篇关于Python读取CSV文件并进行数据可视化绘图的文章就介绍到这了,更多相关Python读取CSV内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python的Django框架中的数据库配置指南

    Python的Django框架中的数据库配置指南

    这篇文章主要介绍了Python的Django框架中的数据库配置指南,文中举了Python内置的SQLite的示例,需要的朋友可以参考下
    2015-07-07
  • 对sklearn的使用之数据集的拆分与训练详解(python3.6)

    对sklearn的使用之数据集的拆分与训练详解(python3.6)

    今天小编就为大家分享一篇对sklearn的使用之数据集的拆分与训练详解(python3.6),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • python判断设备是否联网的方法

    python判断设备是否联网的方法

    这篇文章主要为大家详细介绍了python判断设备是否联网的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-06-06
  • python中将阿拉伯数字转换成中文的实现代码

    python中将阿拉伯数字转换成中文的实现代码

    用于将阿拉伯数字转换化大写中文。程序没经过任何优化,出没经过详细的测试,挂到网上,方便将来有需要的时候直接拿来用
    2011-05-05
  • python读取和保存mat文件的方法

    python读取和保存mat文件的方法

    本文主要介绍了python读取和保存mat文件的方法,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-08-08
  • Python 恐龙跑跑小游戏实现流程

    Python 恐龙跑跑小游戏实现流程

    大家好,本篇文章主要讲的是用python实现谷歌小恐龙小游戏,看看这是你断网时的样子么,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-02-02
  • python实现中文分词FMM算法实例

    python实现中文分词FMM算法实例

    这篇文章主要介绍了python实现中文分词FMM算法,实例分析了Python基于FMM算法进行中文分词的实现方法,涉及Python针对文件、字符串及正则匹配操作的相关技巧,需要的朋友可以参考下
    2015-07-07
  • golang/python实现归并排序实例代码

    golang/python实现归并排序实例代码

    这篇文章主要给大家介绍了关于golang/python实现归并排序的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • 详解Selenium中元素定位方式

    详解Selenium中元素定位方式

    测试对象的定位和操作是我们利用 selenium 编写自动化脚本和 webdriver 的核心内容。本文我们就来学习一下常用的元素定位方法有哪些吧
    2022-06-06
  • Python 高效编程技巧分享

    Python 高效编程技巧分享

    工作中经常要处理各种各样的数据,遇到项目赶进度的时候自己写函数容易浪费时间。Python 中有很多内置函数帮你提高工作效率。
    2020-09-09

最新评论