python面积图之曲线图的填充

 更新时间:2022年06月19日 15:06:23   作者:Vergil_Zsh  
这篇文章主要介绍了python面积图之曲线图的填充,文章围绕主题的相关资料展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下,希望对你的学习有所帮助

用法:

Axes.fill_between(x, y1, y2=0, where=None, interpolate=False, step=None, *, data=None, **kwargs)

参数说明:

基础用法

import matplotlib.pyplot as plt
import numpy as np
x = [1, 2, 3, 4, 5]
y1 = [1, 4, 9, 16, 25]
y2 = [9, 9, 9, 9, 9]
fig, (ax1, ax2) = plt.subplots(1,2)
ax1.fill_between(x, y1, alpha=.5, linewidth=0)
ax1.set_title('填充x,y1之间')
ax2.fill_between(x, y2, alpha=.5, linewidth=1)
ax2.set_title('填充x,y2之间')
plt.show()

当然这样时没有多大意义的,只是想展示出一个比较明确的填充,类似于区域全部填充颜色

案例

import matplotlib.pyplot as plt
import numpy as np

np.random.seed(1)
x = np.linspace(0, 8, 16)
y1 = 3 + 4*x/8 + np.random.uniform(0.0, 0.5, len(x))
y2 = 1 + 2*x/8 + np.random.uniform(0.0, 0.5, len(x))
fig, ax = plt.subplots()
ax.fill_between(x, y1, y2, alpha=.5, linewidth=0)
ax.plot(x, (y1 + y2)/2, linewidth=2)

ax.set(xlim=(0, 8), xticks=np.arange(1, 8),
       ylim=(0, 8), yticks=np.arange(1, 8))
plt.show()

复杂的fille_between(案例来源官网)

import numpy as np
import matplotlib.pyplot as plt

Nsteps, Nwalkers = 100, 250
t = np.arange(Nsteps)
# an (Nsteps x Nwalkers) array of random walk steps
S1 = 0.004 + 0.02*np.random.randn(Nsteps, Nwalkers)
S2 = 0.002 + 0.01*np.random.randn(Nsteps, Nwalkers)
# an (Nsteps x Nwalkers) array of random walker positions
X1 = S1.cumsum(axis=0)
X2 = S2.cumsum(axis=0)
# Nsteps length arrays empirical means and standard deviations of both
# populations over time
mu1 = X1.mean(axis=1)
sigma1 = X1.std(axis=1)
mu2 = X2.mean(axis=1)
sigma2 = X2.std(axis=1)
# plot it!
fig, ax = plt.subplots(1)
ax.plot(t, mu1, lw=2, label='mean population 1')
ax.plot(t, mu2, lw=2, label='mean population 2')
ax.fill_between(t, mu1+sigma1, mu1-sigma1, facecolor='C0', alpha=0.4)
ax.fill_between(t, mu2+sigma2, mu2-sigma2, facecolor='C1', alpha=0.4)
ax.set_title(r'random walkers empirical $\mu$ and $\pm \sigma$ interval')
ax.legend(loc='upper left')
ax.set_xlabel('num steps')
ax.set_ylabel('position')
ax.grid()

where和interpolate

where

定义从何处排除要填充的某些水平区域。填充区域由坐标x[其中]定义。更准确地说,如果其中[i]和其中[i+1],则在x[i]和x[i+1]之间填充。请注意,此定义意味着where中两个假值之间的孤立真值不会导致填充。由于相邻的假值,真实位置的两侧仍保持未填充状态。

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
x = np.arange(0, 4 * np.pi, 0.01)
y = np.sin(x)
ax.plot(x, y, color='black')
ax.fill_between(x, y, 0, where=(x>4)&(x<5),color='cyan', alpha=0.5)
plt.show()

interpolate

在语义上,where通常用于y1>y2或类似的词。默认情况下,定义填充区域的多边形节点将仅放置在x阵列中的位置。这样的多边形无法描述上述靠近交点的语义。包含交叉点的x截面仅被剪裁。
将“插值”设置为True将计算实际交点,并将填充区域延伸到此点。

import numpy as np
import matplotlib.pyplot as plt

x = np.array([0, 1, 2, 3])
y1 = np.array([0.8, 0.8, 0.2, 0.2])
y2 = np.array([0, 0, 1, 1])

fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.set_title('interpolation=False')
ax1.plot(x, y1, 'o--')
ax1.plot(x, y2, 'o--')
ax1.fill_between(x, y1, y2, where=(y1 > y2), color='C0', alpha=0.3)
ax1.fill_between(x, y1, y2, where=(y1 < y2), color='C1', alpha=0.3)
ax2.set_title('interpolation=True')
ax2.plot(x, y1, 'o--')
ax2.plot(x, y2, 'o--')
ax2.fill_between(x, y1, y2, where=(y1 > y2), color='C0', alpha=0.3,
                 interpolate=True)
ax2.fill_between(x, y1, y2, where=(y1 <= y2), color='C1', alpha=0.3,                interpolate=True)
fig.tight_layout()

step

包含参数为三个{‘pre’,‘post’,‘mid’}
如果填充应为阶跃函数,即x之间的常数,则定义阶跃。该值确定阶跃发生的位置:

  • “pre”:y值从每个x位置持续向左,即间隔(x[i-1],x[i]]的值为y[i]。
  • “post”:y值从每个x位置持续向右,即区间[x[i],x[i+1])的值为y[i]。
  • “mid”:步数出现在x位置的中间。
import numpy as np
import matplotlib.pyplot as plt

a = np.linspace(0,2*3.14,50) 
b = np.sin(a) 
plt.figsize=((12,6))
plt.subplot(131)
plt.fill_between(a, b, 0, where = (a > 2) & (a < 5), color = 'green', step='pre') 
plt.plot(a,b)
plt.title('step=pre')

plt.subplot(132)
plt.fill_between(a, b, 0, where = (a > 2) & (a < 5), color = 'cyan', step='post') 
plt.plot(a,b)
plt.title('step=post')

plt.subplot(133)
plt.fill_between(a, b, 0, where = (a > 2) & (a < 5), color = 'red', step='mid') 
plt.plot(a,b)
plt.title('step=mid')
plt.show()

偏移会有点不一样,因为函数的缘故,偏移不太明显

到此这篇关于python面积图之曲线图的填充的文章就介绍到这了,更多相关python曲线填充内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Django 迁移、操作数据库的方法

    Django 迁移、操作数据库的方法

    这篇文章主要介绍了Django 迁移、操作数据库的相关知识,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-08-08
  • python 文件转成16进制数组的实例

    python 文件转成16进制数组的实例

    今天小编就为大家分享一篇python 文件转成16进制数组的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • python使用tensorflow保存、加载和使用模型的方法

    python使用tensorflow保存、加载和使用模型的方法

    本篇文章主要介绍了python使用tensorflow保存、加载和使用模型的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-01-01
  • Python实现问题回答小游戏

    Python实现问题回答小游戏

    这篇文章主要介绍了利用Python制作一个简单的知识竞赛小游戏,可以实现回答问题功能,文中的示例代码介绍详细,感兴趣的同学快跟随小编一起学习吧
    2021-12-12
  • python为tornado添加recaptcha验证码功能

    python为tornado添加recaptcha验证码功能

    tornado作为微框架,并没有自带验证码组件,recaptcha是著名的验证码解决方案,简单易用,被很多公司运用来防止恶意注册和评论。tornado添加recaptchaHA非常容易
    2014-02-02
  • Python中的asyncio性能分析

    Python中的asyncio性能分析

    这篇文章主要介绍了Python中的asyncio性能分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-10-10
  • Python入门教程(十八)Python的For循环

    Python入门教程(十八)Python的For循环

    这篇文章主要介绍了Python入门教程(十八)Python的For循环,Python是一门非常强大好用的语言,也有着易上手的特性,本文为入门教程,需要的朋友可以参考下
    2023-04-04
  • Python用requests库爬取返回为空的解决办法

    Python用requests库爬取返回为空的解决办法

    这篇文章主要介绍了Python用requests库爬取返回为空的解决办法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • pycharm2023.1配置python解释器时找不到conda环境解决办法

    pycharm2023.1配置python解释器时找不到conda环境解决办法

    如果你已经安装了Anaconda或Miniconda,但是在PyCharm中找不到conda解释器,可以试试本文介绍的方法,这篇文章主要给大家介绍了关于pycharm2023.1配置python解释器时找不到conda环境的解决办法,需要的朋友可以参考下
    2023-12-12
  • Python实现在Linux系统下更改当前进程运行用户

    Python实现在Linux系统下更改当前进程运行用户

    这篇文章主要介绍了Python实现在Linux系统下更改当前进程运行用户,本文直接给出实现代码,需要的朋友可以参考下
    2015-02-02

最新评论