如何利用python绘制等高线图
更新时间:2022年06月19日 16:26:56 作者:Vergil_Zsh
这篇文章主要介绍了如何利用python绘制等高线图,文章围绕主题展开详细的内容介绍,具有一定的参考价值,感兴趣的小伙伴可以参考一下
使用方法
matplotlib.pyplot.contour(*args, data=None, **kwargs)
参数介绍:
参数X,YZ(M,N)类数组level
import numpy as np import matplotlib.pyplot as plt X, Y = np.meshgrid(np.linspace(-3,3,256), np.linspace(-3,3,256)) Z = (1 - X/2 + X**5 + Y**3) * np.exp(-X**2 - Y**2) levels = np.linspace(np.min(Z), np.max(Z), 7) fig, ax = plt.subplots() ax.contour(X, Y, Z, levels=levels) plt.show()
添加label的
需要住的是inline参数.默认是inline=True
import numpy as np import matplotlib.cm as cm import matplotlib.pyplot as plt delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 fig, ax = plt.subplots() CS = ax.contour(X, Y, Z) ax.clabel(CS, inline=True, fontsize=10) ax.set_title('Simplest default with labels') plt.show()
绘制虚线
import numpy as np import matplotlib.cm as cm import matplotlib.pyplot as plt delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 fig, ax = plt.subplots() CS = ax.contour(X, Y, Z, 6, colors='k') ax.clabel(CS, fontsize=9, inline=True) ax.set_title('Single color - negative contours dashed') plt.show()
level
确定等高线数量/位置,选择不超过n+1个"良好"轮廓级别
import numpy as np import matplotlib.cm as cm import matplotlib.pyplot as plt delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(14,7)) axs[0].set_title('levels=6') CS = axs[0].contour(X, Y, Z, 6, colors='k') axs[0].clabel(CS, fontsize=9, inline=True) axs[1].set_title('levels=10') CS1 = axs[1].contour(X, Y, Z, 10, colors='k') axs[1].clabel(CS1, fontsize=9, inline=True) plt.show()
设置颜色和线条宽度
import numpy as np import matplotlib.cm as cm import matplotlib.pyplot as plt delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 fig, ax = plt.subplots() CS = ax.contour(X, Y, Z, 6, linewidths=np.arange(.5, 4, .5), colors=('r', 'cyan', 'blue', (1, 1, 0), '#afeeee', '0.5'), ) ax.clabel(CS, fontsize=9, inline=True) ax.set_title('Crazy lines') plt.show()
其他设置
import numpy as np import matplotlib.cm as cm import matplotlib.pyplot as plt delta = 0.025 x = np.arange(-3.0, 3.0, delta) y = np.arange(-2.0, 2.0, delta) X, Y = np.meshgrid(x, y) Z1 = np.exp(-X**2 - Y**2) Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) Z = (Z1 - Z2) * 2 fig, ax = plt.subplots() im = ax.imshow(Z, interpolation='bilinear', origin='lower', cmap=cm.gray, extent=(-3, 3, -2, 2)) levels = np.arange(-1.2, 1.6, 0.2) CS = ax.contour(Z, levels, origin='lower', cmap='flag', extend='both', linewidths=2, extent=(-3, 3, -2, 2)) CS.collections[6].set_linewidth(4) ax.clabel(CS, levels[1::2], # label every second level inline=True, fmt='%1.1f', fontsize=14) CB = fig.colorbar(CS, shrink=0.8) ax.set_title('Lines with colorbar') CBI = fig.colorbar(im, orientation='horizontal', shrink=0.8) l, b, w, h = ax.get_position().bounds ll, bb, ww, hh = CB.ax.get_position().bounds CB.ax.set_position([ll, b + 0.1*h, ww, h*0.8]) plt.show()
到此这篇关于如何利用python绘制等高线图的文章就介绍到这了,更多相关python绘制等高线图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
python3.x+pyqt5实现主窗口状态栏里(嵌入)显示进度条功能
这篇文章主要介绍了python3.x+pyqt5实现主窗口状态栏里(嵌入)显示进度条功能,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下2019-07-07
最新评论