基于Pytorch实现的声音分类实例代码
前言
本章我们来介绍如何使用Pytorch训练一个区分不同音频的分类模型,例如你有这样一个需求,需要根据不同的鸟叫声识别是什么种类的鸟,这时你就可以使用这个方法来实现你的需求了。
源码地址:https://github.com/yeyupiaoling/AudioClassification-Pytorch
环境准备
主要介绍libsora,PyAudio,pydub的安装,其他的依赖包根据需要自行安装。
- Python 3.7
- Pytorch 1.10.0
安装libsora
最简单的方式就是使用pip命令安装,如下:
pip install pytest-runner pip install librosa==0.9.1
注意: 如果pip命令安装不成功,那就使用源码安装,下载源码:https://github.com/librosa/librosa/releases/, windows的可以下载zip压缩包,方便解压。
pip install pytest-runner tar xzf librosa-<版本号>.tar.gz 或者 unzip librosa-<版本号>.tar.gz cd librosa-<版本号>/ python setup.py install
如果出现 libsndfile64bit.dll': error 0x7e
错误,请指定安装版本0.6.3,如 pip install librosa==0.6.3
安装ffmpeg, 下载地址:http://blog.gregzaal.com/how-to-install-ffmpeg-on-windows/,笔者下载的是64位,static版。
然后到C盘,笔者解压,修改文件名为 ffmpeg
,存放在 C:\Program Files\
目录下,并添加环境变量 C:\Program Files\ffmpeg\bin
最后修改源码,路径为 C:\Python3.7\Lib\site-packages\audioread\ffdec.py
,修改32行代码,如下:
COMMANDS = ('C:\\Program Files\\ffmpeg\\bin\\ffmpeg.exe', 'avconv')
安装PyAudio
使用pip安装命令,如下:
pip install pyaudio
在安装的时候需要使用到C++库进行编译,如果读者的系统是windows,Python是3.7,可以在这里下载whl安装包,下载地址:https://github.com/intxcc/pyaudio_portaudio/releases
安装pydub
使用pip命令安装,如下:
pip install pydub
训练分类模型
把音频转换成训练数据最重要的是使用了librosa,使用librosa可以很方便得到音频的梅尔频谱(Mel Spectrogram),使用的API为 librosa.feature.melspectrogram()
,输出的是numpy值。关于梅尔频谱具体信息读者可以自行了解,跟梅尔频谱同样很重要的梅尔倒谱(MFCCs)更多用于语音识别中,对应的API为 librosa.feature.mfcc()
。同样以下的代码,就可以获取到音频的梅尔频谱。
wav, sr = librosa.load(data_path, sr=16000) features = librosa.feature.melspectrogram(y=wav, sr=sr, n_fft=400, n_mels=80, hop_length=160, win_length=400) features = librosa.power_to_db(features, ref=1.0, amin=1e-10, top_db=None)
生成数据列表
生成数据列表,用于下一步的读取需要,audio_path
为音频文件路径,用户需要提前把音频数据集存放在dataset/audio
目录下,每个文件夹存放一个类别的音频数据,每条音频数据长度在3秒以上,如 dataset/audio/鸟叫声/······
。audio
是数据列表存放的位置,生成的数据类别的格式为 音频路径\t音频对应的类别标签
,音频路径和标签用制表符 \t
分开。读者也可以根据自己存放数据的方式修改以下函数。
Urbansound8K 是目前应用较为广泛的用于自动城市环境声分类研究的公共数据集,包含10个分类:空调声、汽车鸣笛声、儿童玩耍声、狗叫声、钻孔声、引擎空转声、枪声、手提钻、警笛声和街道音乐声。数据集下载地址:https://zenodo.org/record/1203745/files/UrbanSound8K.tar.gz。以下是针对Urbansound8K生成数据列表的函数。如果读者想使用该数据集,请下载并解压到 dataset
目录下,把生成数据列表代码改为以下代码。
# 生成数据列表 def get_data_list(audio_path, list_path): sound_sum = 0 audios = os.listdir(audio_path) f_train = open(os.path.join(list_path, 'train_list.txt'), 'w') f_test = open(os.path.join(list_path, 'test_list.txt'), 'w') for i in range(len(audios)): sounds = os.listdir(os.path.join(audio_path, audios[i])) for sound in sounds: if '.wav' not in sound:continue sound_path = os.path.join(audio_path, audios[i], sound) t = librosa.get_duration(filename=sound_path) # 过滤小于2.1秒的音频 if t >= 2.1: if sound_sum % 100 == 0: f_test.write('%s\t%d\n' % (sound_path, i)) else: f_train.write('%s\t%d\n' % (sound_path, i)) sound_sum += 1 print("Audio:%d/%d" % (i + 1, len(audios))) f_test.close() f_train.close() if __name__ == '__main__': get_data_list('dataset/UrbanSound8K/audio', 'dataset')
创建 reader.py
用于在训练时读取数据。编写一个 CustomDataset
类,用读取上一步生成的数据列表。
class CustomDataset(Dataset): def __init__(self, data_list_path, model='train', sr=16000, chunk_duration=3): super(CustomDataset, self).__init__() with open(data_list_path, 'r') as f: self.lines = f.readlines() self.model = model self.sr = sr self.chunk_duration = chunk_duration def __getitem__(self, idx): try: audio_path, label = self.lines[idx].replace('\n', '').split('\t') spec_mag = load_audio(audio_path, mode=self.model, sr=self.sr, chunk_duration=self.chunk_duration) return spec_mag, np.array(int(label), dtype=np.int64) except Exception as ex: print(f"[{datetime.now()}] 数据: {self.lines[idx]} 出错,错误信息: {ex}", file=sys.stderr) rnd_idx = np.random.randint(self.__len__()) return self.__getitem__(rnd_idx) def __len__(self): return len(self.lines)
下面是在训练时或者测试时读取音频数据,训练时对转换的梅尔频谱数据随机裁剪,如果是测试,就取前面的,最好要执行归一化。
def load_audio(audio_path, mode='train', sr=16000, chunk_duration=3): # 读取音频数据 wav, sr_ret = librosa.load(audio_path, sr=sr) if mode == 'train': # 随机裁剪 num_wav_samples = wav.shape[0] # 数据太短不利于训练 if num_wav_samples < sr: raise Exception(f'音频长度不能小于1s,实际长度为:{(num_wav_samples / sr):.2f}s') num_chunk_samples = int(chunk_duration * sr) if num_wav_samples > num_chunk_samples + 1: start = random.randint(0, num_wav_samples - num_chunk_samples - 1) stop = start + num_chunk_samples wav = wav[start:stop] # 对每次都满长度的再次裁剪 if random.random() > 0.5: wav[:random.randint(1, sr // 2)] = 0 wav = wav[:-random.randint(1, sr // 2)] elif mode == 'eval': # 为避免显存溢出,只裁剪指定长度 num_wav_samples = wav.shape[0] num_chunk_samples = int(chunk_duration * sr) if num_wav_samples > num_chunk_samples + 1: wav = wav[:num_chunk_samples] features = librosa.feature.melspectrogram(y=wav, sr=sr, n_fft=400, n_mels=80, hop_length=160, win_length=400) features = librosa.power_to_db(features, ref=1.0, amin=1e-10, top_db=None) # 归一化 mean = np.mean(features, 0, keepdims=True) std = np.std(features, 0, keepdims=True) features = (features - mean) / (std + 1e-5) features = features.astype('float32') return features
训练
接着就可以开始训练模型了,创建 train.py
。我们搭建简单的卷积神经网络,如果音频种类非常多,可以适当使用更大的卷积神经网络模型。通过把音频数据转换成梅尔频谱。然后定义优化方法和获取训练和测试数据。要注意 args.num_classes
参数的值,这个是类别的数量,要根据你数据集中的分类数量来修改。
def train(args): # 获取数据 train_dataset = CustomDataset(args.train_list_path, model='train') train_loader = DataLoader(dataset=train_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=collate_fn, num_workers=args.num_workers) test_dataset = CustomDataset(args.test_list_path, model='eval') test_loader = DataLoader(dataset=test_dataset, batch_size=args.batch_size, collate_fn=collate_fn, num_workers=args.num_workers) # 获取分类标签 with open(args.label_list_path, 'r', encoding='utf-8') as f: lines = f.readlines() class_labels = [l.replace('\n', '') for l in lines] # 获取模型 device = torch.device("cuda") model = EcapaTdnn(num_classes=args.num_classes) model.to(device) # 获取优化方法 optimizer = torch.optim.Adam(params=model.parameters(), lr=args.learning_rate, weight_decay=5e-4) # 获取学习率衰减函数 scheduler = CosineAnnealingLR(optimizer, T_max=args.num_epoch) # 恢复训练 if args.resume is not None: model.load_state_dict(torch.load(os.path.join(args.resume, 'model.pth'))) state = torch.load(os.path.join(args.resume, 'model.state')) last_epoch = state['last_epoch'] optimizer_state = torch.load(os.path.join(args.resume, 'optimizer.pth')) optimizer.load_state_dict(optimizer_state) print(f'成功加载第 {last_epoch} 轮的模型参数和优化方法参数') # 获取损失函数 loss = torch.nn.CrossEntropyLoss()
最后执行训练,每100个batch打印一次训练日志,训练一轮之后执行测试和保存模型,在测试时,把每个batch的输出都统计,最后求平均值。
for epoch in range(args.num_epoch): loss_sum = [] accuracies = [] for batch_id, (spec_mag, label) in enumerate(train_loader): spec_mag = spec_mag.to(device) label = label.to(device).long() output = model(spec_mag) # 计算损失值 los = loss(output, label) optimizer.zero_grad() los.backward() optimizer.step() # 计算准确率 output = torch.nn.functional.softmax(output, dim=-1) output = output.data.cpu().numpy() output = np.argmax(output, axis=1) label = label.data.cpu().numpy() acc = np.mean((output == label).astype(int)) accuracies.append(acc) loss_sum.append(los) if batch_id % 100 == 0: print(f'[{datetime.now()}] Train epoch [{epoch}/{args.num_epoch}], batch: {batch_id}/{len(train_loader)}, ' f'lr: {scheduler.get_last_lr()[0]:.8f}, loss: {sum(loss_sum) / len(loss_sum):.8f}, ' f'accuracy: {sum(accuracies) / len(accuracies):.8f}') scheduler.step()
每轮训练结束之后都会执行一次评估,和保存模型。评估会出来输出准确率,还保存了混合矩阵图片,如下。
预测
在训练结束之后,我们得到了一个模型参数文件,我们使用这个模型预测音频,在执行预测之前,需要把音频转换为梅尔频谱数据,最后输出的结果即为预测概率最大的标签。
parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) add_arg('audio_path', str, 'dataset/UrbanSound8K/audio/fold5/156634-5-2-5.wav', '图片路径') add_arg('num_classes', int, 10, '分类的类别数量') add_arg('label_list_path', str, 'dataset/label_list.txt', '标签列表路径') add_arg('model_path', str, 'models/model.pth', '模型保存的路径') args = parser.parse_args() # 获取分类标签 with open(args.label_list_path, 'r', encoding='utf-8') as f: lines = f.readlines() class_labels = [l.replace('\n', '') for l in lines] # 获取模型 device = torch.device("cuda") model = EcapaTdnn(num_classes=args.num_classes) model.to(device) model.load_state_dict(torch.load(args.model_path)) model.eval() def infer(): data = load_audio(args.audio_path, mode='infer') data = data[np.newaxis, :] data = torch.tensor(data, dtype=torch.float32, device=device) # 执行预测 output = model(data) result = torch.nn.functional.softmax(output, dim=-1) result = result.data.cpu().numpy() # 显示图片并输出结果最大的label lab = np.argsort(result)[0][-1] print(f'音频:{args.audio_path} 的预测结果标签为:{class_labels[lab]}') if __name__ == '__main__': infer()
其他
为了方便读取录制数据和制作数据集,这里提供了两个程序,首先是 record_audio.py
,这个用于录制音频,录制的音频帧率为44100,通道为1,16bit。
import pyaudio import wave import uuid from tqdm import tqdm import os s = input('请输入你计划录音多少秒:') CHUNK = 1024 FORMAT = pyaudio.paInt16 CHANNELS = 1 RATE = 44100 RECORD_SECONDS = int(s) WAVE_OUTPUT_FILENAME = "save_audio/%s.wav" % str(uuid.uuid1()).replace('-', '') p = pyaudio.PyAudio() stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) print("开始录音, 请说话......") frames = [] for i in tqdm(range(0, int(RATE / CHUNK * RECORD_SECONDS))): data = stream.read(CHUNK) frames.append(data) print("录音已结束!") stream.stop_stream() stream.close() p.terminate() if not os.path.exists('save_audio'): os.makedirs('save_audio') wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb') wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(FORMAT)) wf.setframerate(RATE) wf.writeframes(b''.join(frames)) wf.close() print('文件保存在:%s' % WAVE_OUTPUT_FILENAME) os.system('pause')
创建 crop_audio.py
,在训练是只是裁剪前面的3秒的音频,所以我们要把录制的硬盘安装每3秒裁剪一段,把裁剪后音频存放在音频名称命名的文件夹中。最后把这些文件按照训练数据的要求创建数据列表和训练数据。
import os import uuid import wave from pydub import AudioSegment # 按秒截取音频 def get_part_wav(sound, start_time, end_time, part_wav_path): save_path = os.path.dirname(part_wav_path) if not os.path.exists(save_path): os.makedirs(save_path) start_time = int(start_time) * 1000 end_time = int(end_time) * 1000 word = sound[start_time:end_time] word.export(part_wav_path, format="wav") def crop_wav(path, crop_len): for src_wav_path in os.listdir(path): wave_path = os.path.join(path, src_wav_path) print(wave_path[-4:]) if wave_path[-4:] != '.wav': continue file = wave.open(wave_path) # 帧总数 a = file.getparams().nframes # 采样频率 f = file.getparams().framerate # 获取音频时间长度 t = int(a / f) print('总时长为 %d s' % t) # 读取语音 sound = AudioSegment.from_wav(wave_path) for start_time in range(0, t, crop_len): save_path = os.path.join(path, os.path.basename(wave_path)[:-4], str(uuid.uuid1()) + '.wav') get_part_wav(sound, start_time, start_time + crop_len, save_path) if __name__ == '__main__': crop_len = 3 crop_wav('save_audio', crop_len)
创建 infer_record.py
,这个程序是用来不断进行录音识别,录音时间之所以设置为6秒,所以我们可以大致理解为这个程序在实时录音识别。通过这个应该我们可以做一些比较有趣的事情,比如把麦克风放在小鸟经常来的地方,通过实时录音识别,一旦识别到有鸟叫的声音,如果你的数据集足够强大,有每种鸟叫的声音数据集,这样你还能准确识别是那种鸟叫。如果识别到目标鸟类,就启动程序,例如拍照等等。
# 录音参数 CHUNK = 1024 FORMAT = pyaudio.paInt16 CHANNELS = 1 RATE = 44100 RECORD_SECONDS = 6 WAVE_OUTPUT_FILENAME = "infer_audio.wav" # 打开录音 p = pyaudio.PyAudio() stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) # 获取录音数据 def record_audio(): print("开始录音......") frames = [] for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)): data = stream.read(CHUNK) frames.append(data) print("录音已结束!") wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb') wf.setnchannels(CHANNELS) wf.setsampwidth(p.get_sample_size(FORMAT)) wf.setframerate(RATE) wf.writeframes(b''.join(frames)) wf.close() return WAVE_OUTPUT_FILENAME # 预测 def infer(audio_path): data = load_audio(audio_path, mode='infer') data = data[np.newaxis, :] data = torch.tensor(data, dtype=torch.float32, device=device) # 执行预测 output = model(data) result = torch.nn.functional.softmax(output, dim=-1) result = result.data.cpu().numpy() # 显示图片并输出结果最大的label lab = np.argsort(result)[0][-1] return class_labels[lab] if __name__ == '__main__': try: while True: # 加载数据 audio_path = record_audio() # 获取预测结果 label = infer(audio_path) print(f'预测的标签为:{label}') except Exception as e: print(e) stream.stop_stream() stream.close() p.terminate()
总结
到此这篇关于基于Pytorch实现声音分类的文章就介绍到这了,更多相关Pytorch实现声音分类内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
详解如何用Flask中的Blueprints构建大型Web应用
Blueprints是Flask中的一种模式,用于将应用程序分解为可重用的模块,这篇文章主要为大家详细介绍了如何使用Blueprints构建大型Web应用,需要的可以参考下2024-03-03
最新评论