Python pandas索引的设置和修改方法

 更新时间:2022年06月21日 16:24:11   作者:尤尔小屋的猫  
索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容,下面这篇文章主要给大家介绍了关于Python pandas索引的设置和修改的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下

前言

本文主要是介绍Pandas中行和列索引的4个函数操作:

  • set_index
  • reset_index
  • set_axis
  • rename

创建索引

快速回顾下Pandas创建索引的常见方法:

pd.Index

In [1]:

import pandas as pd
import numpy as np

In [2]:

# 指定类型和名称

s1 = pd.Index([1,2,3,4,5,6,7], 
         dtype="int",
         name="Peter")

s1

Out[2]:

Int64Index([1, 2, 3, 4, 5, 6, 7], dtype='int64', name='Peter')

pd.IntervalIndex

新的间隔索引 IntervalIndex 通常使用 interval_range()函数来进行构造,它使用的是数据或者数值区间,基本用法:

In [3]:

s2 = pd.interval_range(start=0, end=6, closed="left")
s2

Out[3]:

IntervalIndex([[0, 1), [1, 2), [2, 3), [3, 4), [4, 5), [5, 6)],
              closed='left',
              dtype='interval[int64]')

pd.CategoricalIndex

In [4]:

s3 = pd.CategoricalIndex(
    # 待排序的数据
    ["S","M","L","XS","M","L","S","M","L","XL"],
    # 指定分类顺序
    categories=["XS","S","M","L","XL"],
    # 排需
    ordered=True,
    # 索引名字
    name="category"
)

s3

Out[4]:

CategoricalIndex(['S', 'M', 'L', 'XS', 'M', 'L', 'S', 'M', 'L', 'XL'], 
						categories=['XS', 'S', 'M', 'L', 'XL'], 
						ordered=True, 
						name='category', 
						dtype='category')

pd.DatetimeIndex

以时间和日期作为索引,通过date_range函数来生成,具体例子为:

In [5]:

# 日期作为索引,D代表天

s4 = pd.date_range("2022-01-01",periods=6, freq="D")
s4

Out[5]:

DatetimeIndex(['2022-01-01', '2022-01-02', '2022-01-03', 
							'2022-01-04','2022-01-05', '2022-01-06'],
              dtype='datetime64[ns]', freq='D')

pd.PeriodIndex

pd.PeriodIndex是一个专门针对周期性数据的索引,方便针对具有一定周期的数据进行处理,具体用法如下:

In [6]:

s5 = pd.PeriodIndex(['2022-01-01', '2022-01-02', 
											'2022-01-03', '2022-01-04'], 
											freq = '2H')
s5

Out[6]:

PeriodIndex(['2022-01-01 00:00', '2022-01-02 00:00', 
							'2022-01-03 00:00','2022-01-04 00:00'],
            dtype='period[2H]', freq='2H')

pd.TimedeltaIndex

In [7]:

data = pd.timedelta_range(start='1 day', end='3 days', freq='6H')
data

Out[7]:

TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
                '1 days 18:00:00', '2 days 00:00:00', '2 days 06:00:00',
                '2 days 12:00:00', '2 days 18:00:00', '3 days 00:00:00'],
               dtype='timedelta64[ns]', freq='6H')

In [8]:

s6 = pd.TimedeltaIndex(data)
s6

Out[8]:

TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00',
                '1 days 18:00:00', '2 days 00:00:00', '2 days 06:00:00',
                '2 days 12:00:00', '2 days 18:00:00', '3 days 00:00:00'],
               dtype='timedelta64[ns]', freq='6H')

读取数据

下面通过一份 简单的数据来讲解4个函数的使用。数据如下:

set_index

设置单层索引

In [10]:

# 设置单层索引

df1 = df.set_index("name")
df1

我们发现df1的索引已经变成了name字段的相关值。

下面是设置多层索引:

# 设置两层索引

df2 = df.set_index(["sex","name"])
df2

reset_index

对索引的重置:

针对多层索引的重置:

多层索引直接原地修改:

set_axis

将指定的数据分配给所需要的轴axis。其中axis=0代表行方向,axis=1代表列方向。

两种不同的写法:

axis=0 等价于  axis="index"
axis=1 等价于  axis="columns"

操作行索引

使用 index 效果相同:

原来的df2是没有改变的。如果我们想改变生效,同样也可以直接原地修改:

操作列索引

针对axis=1或者axis="columns"方向上的操作。

1、直接传入我们需要修改的新名称:

使用axis="columns"效果相同:

同样也可以直接原地修改:

rename

给行索引或者列索引进行重命名,假设我们的原始数据如下:

字典形式

1、通过传入的一个或者多个属性的字典形式进行修改:

In [29]:

# 修改单个列索引;非原地修改
df2.rename(columns={"Sex":"sex"})

同时修改多个列属性的名称:

函数形式

2、通过传入的函数进行修改:

In [31]:

# 传入函数
df2.rename(str.upper, axis="columns")

也可以使用匿名函数lambda:

# 全部变成小写
df2.rename(lambda x: x.lower(), axis="columns")

使用案例

In [33]:

在这里我们使用的是可视化库plotly_express库中的自带数据集tips:

import plotly_express as px

tips = px.data.tips()  
tips

按日统计总消费

In [34]:

df3 = tips.groupby("day")["total_bill"].sum()
df3

Out[34]:

day
Fri      325.88
Sat     1778.40
Sun     1627.16
Thur    1096.33
Name: total_bill, dtype: float64

In [35]:

我们发现df3其实是一个Series型的数据:

type(df3)   # Series型的数据

Out[35]:

pandas.core.series.Series

In [36]:

下面我们通过reset_index函数将其变成了DataFrame数据:

df4 = df3.reset_index()
df4

我们把列方向上的索引重新命名下:

In [37]:

# 直接原地修改
df4.rename(columns={"day":"Day", "total_bill":"Amount"}, 
           inplace=True)

df4

按日、性别统计小费均值,消费总和

In [38]:

df5 = tips.groupby(["day","sex"]).agg({"tip":"mean", "total_bill":"sum"})
df5

我们发现df5是df5是一个具有多层索引的数据框:

In [39]:

type(df5)  

Out[39]:

pandas.core.frame.DataFrame

我们可以选择重置其中一个索引:

在重置索引的同时,直接丢弃原来的字段信息:下面的sex信息被删除

In [41]:

df5.reset_index(["sex"],drop=True)  # 非原地修改

列方向上的索引直接原地修改:

df5.reset_index(inplace=True)  # 原地修改
df5 

笨方法

最后介绍一个笨方法来修改列索引的名称:就是将新的名称通过列表的形式全部赋值给数据框的columns属性

在列索引个数少的时候用起来挺方便的,如果多了不建议使用。

总结

到此这篇关于Python pandas索引的设置和修改的文章就介绍到这了,更多相关pandas索引设置和修改内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python3 itchat实现微信定时发送群消息的实例代码

    Python3 itchat实现微信定时发送群消息的实例代码

    使用微信,定时往指定的微信群里发送指定信息。接下来通过本文给大家分享Python3 itchat实现微信定时发送群消息的实例代码,需要的朋友可以参考下
    2019-07-07
  • flask框架自定义过滤器示例【markdown文件读取和展示功能】

    flask框架自定义过滤器示例【markdown文件读取和展示功能】

    这篇文章主要介绍了flask框架自定义过滤器,结合实例形式分析了flask基于自定义过滤器实现markdown文件读取和展示功能相关操作技巧,需要的朋友可以参考下
    2019-11-11
  • python对网页文本的格式化实例方法

    python对网页文本的格式化实例方法

    在本篇文章里小编给大家整理是一篇关于python对网页文本的格式化实例方法,有兴趣的朋友们可以跟着学习参考下。
    2021-10-10
  • 详解numpy1.19.4与python3.9版本冲突解决

    详解numpy1.19.4与python3.9版本冲突解决

    这篇文章主要介绍了详解numpy1.19.4与python3.9版本冲突解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • Python调用ChatGPT API接口的用法详解

    Python调用ChatGPT API接口的用法详解

    ChatGPT可以实现chat,生成图片,识别关键,改错等等功能,本文简单的给大家介绍一下如何使用python调用ChatGPT API接口,感兴趣的小伙伴可以参考一下
    2023-05-05
  • 详解Python单元测试的两种写法

    详解Python单元测试的两种写法

    python的两个单元测试包分别是 doctest 和 unittest,这两个包的使用起来各有长处,适用于不同的场景,这篇文章主要介绍了Python单元测试的两种写法,需要的朋友可以参考下
    2022-07-07
  • Python实现蚁群优化算法的示例代码

    Python实现蚁群优化算法的示例代码

    蚁群算法是一种源于大自然生物世界的新的仿生进化算法,本文主要介绍了Python如何实现蚁群算法,文中通过示例代码具有一定的参考价值,感兴趣的小伙伴们可以了解一下
    2023-08-08
  • Python爬虫框架Scrapy基本用法入门教程

    Python爬虫框架Scrapy基本用法入门教程

    这篇文章主要介绍了Python爬虫框架Scrapy基本用法,结合实例形式分析了xpath简单使用、xmlfeed模板、csvfeed模板及crawlfeed模板简单使用方法,需要的朋友可以参考下
    2018-07-07
  • python 配置uwsgi 启动Django框架的详细教程

    python 配置uwsgi 启动Django框架的详细教程

    这篇文章主要介绍了python 配置uwsgi 启动Django框架,本文给大家讲解的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-12-12
  • 解决Python requests库编码 socks5代理的问题

    解决Python requests库编码 socks5代理的问题

    今天小编就为大家分享一篇解决Python requests库编码 socks5代理的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05

最新评论