Python类的定义继承调用比较方法技巧

 更新时间:2022年06月23日 08:59:24   作者:生而为人我很遗憾  
这篇文章主要介绍了Python类的定义继承调用比较方法技巧,文章首先通过类的约束展开详情围绕主题介绍相关内容,具有一定的参考价值,需要的小伙伴可以参考一下

一、类的约束

# _开头: 私有变量;
# __开问: 私有变量,不能被继承;
# __xxx__: 能被访问,不能被继承;
class A:
def __init__(self):
self._internal = 0 # 私有变量不能被访问
self.public = 1 # 可被访问
def public_method(self):
pass
def _private_method(self): # 私有方法不能被访问
pass
class B:
def __init__(self):
self.__private = 0 # 这个属性会在内存中被重新命名为_B__private

def __private_method(self): # 不能被访问,不能被继承
pass
def __private_method__(self): # 能被访问,不能被继承
pass

二、类的定义

2.1、创建创建

class Dog:
a = "0"; #相当于public static变量,全局的
"""__init__是一个默认的方法,且self为默认的,用self修饰的属性为public类型的类变量"""
def __init__(self, name, age):
self.name = name
self.age = age
self.sex = "1";#设置属性默认值

def sit(self):
print(self.name + "is now sitting" + "and sex is " + self.sex + Dog.a)

@classmethod
def user_name(cls, name): #注意这种注解的用法
return cls()

dog = Dog("kk", 12);
dog.sit()

2.1.1、类的导入

在python中分为文件、模块、类,其中文件和模块可划等价;所以导入有几种方式,比如dog.py文件中定义了两个Class,则在使用类中导入方法有以下几种:

  • from car import Dog;#导入一个模块中的特定类,使用时则直接Car();
  • import car;#导入一个模块中的所有类,使用时则需要car.Car();
  • from car import *;#不推荐,容易引起命名冲突问题
from collections import OrderedDict; #使用标准类库
t = OrderedDict();

2.1.2、构造器

class Date:
# Primary constructor
def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day

# Alternate constructor
@classmethod
def today(cls):
t = time.localtime() #它接收一个class作为第一个参数,它被用来创建并返回最终的实例, 这个cls==__init__
return cls(t.tm_year, t.tm_mon, t.tm_mday)

a = Date(2020, 5, 10) # Primary
b = Date.today() # Alternate

减少构造函数的参数个数:

class Structure1:
# Class variable that specifies expected fields
_field_list = []

def __init__(self, *args):
if len(args) != len(self._field_list):
raise TypeError(f'Expected {len(self._field_list)} arguments')
# Set the arguments
for name, value in zip(self._field_list, args):
setattr(self, name, value)

# Example class definitions
class Course(Structure1):
# 这行只是为了一个准许入判断,没有太多实际意思,或是一个声明
_field_list = ['course_name', 'total_class', 'score']

c = Course('python', 30, 0.3);

关键字参数

class Structure2:
_field_list = []

def __init__(self, *args, **kwargs):
if len(args) > len(self._field_list):
raise TypeError(f'Expected {len(self._field_list)} arguments')
# Set all of the positional arguments
for name, value in zip(self._field_list, args):
setattr(self, name, value)

# Set the remaining keyword arguments
#是通过pop这种方式来检查的,在长度范围内如果pop出错则抛异常
for name in self._field_list[len(args):]:
setattr(self, name, kwargs.pop(name))

# Check for any remaining unknown arguments
if kwargs:
raise TypeError(f"Invalid argument(s): {','.join(kwargs)}")

# Example use
class Course(Structure2):
_field_list = ['course_name', 'total_class', 'score']

course_1 = Course('python', 30, 0.3)
course_2 = Course('python', 30, score=0.3)
course_3 = Course('python', total_class=30, score=0.3)

扩展关键字参数:

class Structure3:
# Class variable that specifies expected fields
_field_list = []

def __init__(self, *args, **kwargs):
if len(args) != len(self._field_list):
raise TypeError(f'Expected {len(self._field_list)} arguments')

# Set the arguments
for name, value in zip(self._field_list, args):
setattr(self, name, value)

# Set the additional arguments (if any)
extra_args = kwargs.keys() - self._field_list
for name in extra_args:
setattr(self, name, kwargs.pop(name))

if kwargs:
raise TypeError(f"Duplicate values for {','.join(kwargs)}")

# Example use
if __name__ == '__main__':
class Course(Structure3):
_field_list = ['course_name', 'total_class', 'score']

course_1 = Course('python', 30, 0.3)
course_2 = Course('python', 30, 0.3, date='8/5/2020')

2.1.3、类属性

要创建一个新的实例属性,可以通过描述器的形式来定义它的功能,一个描述器就是一个实现了3个核心属性访问操作的类,分别对应get\set\delete这三个特殊的方法。

# Descriptor attribute for an integer type-checked attribute
class Integer:
def __init__(self, name):
self.name = name
"""下面三个方法只是一个更严格的定义,可以不需要,要使用上面的描述器,需要把描述器放入到一个class中,这样所有对描述器的访问都会被get/set/delete所捕获"""
def __get__(self, instance, cls):
if not instance:
return self
else:
return instance.__dict__[self.name]
def __set__(self, instance, value):
if not isinstance(value, int):
raise TypeError('Expected an int object')
instance.__dict__[self.name] = value
def __delete__(self, instance):
del instance.__dict__[self.name]

示例1:

class Point:
"""实例变量,和下面的x,y不是一回事"""
x = Integer('x')
y = Integer('y')

def __init__(self, x, y):
self.x = x
self.y = y
print(Point.x.name) # x
point = Point(3, 5)
print(f'point x = {point.x}') #3
print(f'point y = {point.y}') #5
point.y = 6
print(f'after change,point y = {point.y}') #6

三、类的继承

ptyhon在实现继承时会用一个叫MRO列表的算法实现,它有三条规则:1、子类会先于父类;2、多个父类会根据它们在列表中的顺序被检查;3、如果对下一个类有两个合法的选择,则返回第一个合法的父类;

3.1、单继承

class A:
def __init__(self):
self.x = 0
class B(A):
def __init__(self):
super().__init__() #这行需要注意,也可以不写,但不写时就不会调用父类的init方法
self.y = 1

3.2、多继承

class Base:
def __init__(self):
print('call Base.__init__')
class A(Base):
def __init__(self):
Base.__init__(self)
print('call A.__init__')

class B(Base):
def __init__(self):
Base.__init__(self)
print('call B.__init__')
"""多继承的实现"""
class C(A,B):
def __init__(self):
A.__init__(self)
B.__init__(self)
print('call C.__init__')
c = C()
# call Base.__init__
# call A.__init__
# call Base.__init__
# call B.__init__
# call C.__init__

3.3、调用父类方法

class Proxy:
def __init__(self, obj):
self._obj = obj

def __getattr__(self, name):
return getattr(self._obj, name)

def __setattr__(self, name, value):
if name.startswith('_'):
"""调用父类方法"""
super().__setattr__(name, value)
else:
setattr(self._obj, name, value)

proxy = Proxy({})
proxy.__setattr__("_name", "hm")

3.4、属性扩展

3.4.1、完全扩展

# 父类
class Person:
def __init__(self, name):
self.name = name

# defined Getter function, auto to call the sign name.setter when it be build
@property
def name(self):
return self._name

# defined Setter function
@name.setter
def name(self, value):
if not isinstance(value, str):
raise TypeError('Expected a string')
self._name = value

# defined Deleter function
@name.deleter
def name(self):
raise AttributeError("Can't delete attribute")

"""子类"""
class SubPerson(Person):
@property
def name(self):
print('Getting name')
return super().name

@name.setter
def name(self, value):
print(f'Setting name to {value}')
super(SubPerson, SubPerson).name.__set__(self, value)

@name.deleter
def name(self):
print('Deleting name')
super(SubPerson, SubPerson).name.__delete__(self)

"""测试"""
sub_person = SubPerson('Guido')
print(f'name is: {sub_person.name}')

3.4.2、单独扩展

class SubPerson(Person):
@Person.name.getter
def name(self):
print('Getting name')
return super().name # or super(SubPerson, SubPerson).name.__set__(self, value)
sub_p = SubPerson('Bill')
#不能用property的原因是,property其实是get、set、del函数的集合,各有各的用处。下面才是正确的扩展方式,所以下面的代码是不工作的
class SubPerson(Person):
@property # Doesn't work
def name(self):
print('Getting name')
return super().name
#如果要用property属性则要用下面的编码实现
class SubPerson(Person):
@property
def name(self):
print('Getting name')
return super().name
@name.setter
def name(self, value):
print(f'Setting name to {value}')
super(SubPerson, SubPerson).name.__set__(self, value)
@name.deleter
def name(self):
print('Deleting name')
super(SubPerson, SubPerson).name.__delete__(self)

四、类的调用

import time
class Date:
# Primary constructor
def __init__(self, year, month, day):
self.year = year
self.month = month
self.day = day
# Alternate constructor
@classmethod
def today(cls):
t = time.localtime() #它接收一个class作为第一个参数,它被用来创建并返回最终的实例, 这个cls==__init__
return cls(t.tm_year, t.tm_mon, t.tm_mday)
"""普通调用"""
c = Date(2010, 12, 12)

"""类方法在继承中使用"""
class NewDate(Date):
pass
c = Date.today() # Creates an instance of Date (cls=Date)
d = NewDate.today() # Creates an instance of NewDate (cls=NewDate)

五、抽象类

from abc import ABCMeta, abstractmethod
class IStream(metaclass=ABCMeta):
@abstractmethod
def read(self, max_bytes=-1):
pass
@abstractmethod
def write(self, data):
pass
"""不能被实例化"""
#a = IStream()

class SocketStream(IStream):
def read(self, max_bytes=-1):
pass
def write(self, data):
pass
"""检查"""
def serialize(obj, stream):
if not isinstance(stream, IStream):
raise TypeError('Expected an IStream')
pass

5.1、强制类型检查

from abc import ABCMeta, abstractmethod
class IStream(metaclass=ABCMeta):
@abstractmethod
def read(self, max_bytes=-1):
pass
@abstractmethod
def write(self, data):
pass
import io
# Register the built-in I/O classes as supporting our interface
IStream.register(io.IOBase)

# Open a normal file and type check
f = None #open('test.txt')
print(f'f object is IStream type: {isinstance(f, IStream)}')
#f object is IStream type: False

六、类的比较

from functools import total_ordering
class Room:
def __init__(self, name, length, width):
self.name = name
self.length = length
self.width = width
self.square_feet = self.length * self.width
@total_ordering
class House:
def __init__(self, name, style):
self.name = name
self.style = style
self.rooms = list()
@property
def living_space_footage(self):
return sum(r.square_feet for r in self.rooms)
def add_room(self, room):
self.rooms.append(room)
def __str__(self):
return f'{self.name}: {self.living_space_footage} square foot {self.style}'
def __eq__(self, other):
return self.living_space_footage == other.living_space_footage

def __lt__(self, other):
return self.living_space_footage < other.living_space_footage
# Build a few houses, and add rooms to them
h1 = House('h1', 'Cape')
h1.add_room(Room('Master Bedroom', 14, 21))
h1.add_room(Room('Living Room', 18, 20))
h1.add_room(Room('Kitchen', 12, 16))
h1.add_room(Room('Office', 12, 12))

h2 = House('h2', 'Ranch')
h2.add_room(Room('Master Bedroom', 14, 21))
h2.add_room(Room('Living Room', 18, 20))
h2.add_room(Room('Kitchen', 12, 16))

h3 = House('h3', 'Split')
h3.add_room(Room('Master Bedroom', 14, 21))
h3.add_room(Room('Living Room', 18, 20))
h3.add_room(Room('Office', 12, 16))
h3.add_room(Room('Kitchen', 15, 17))
houses = [h1, h2, h3]

print(f'Is {h1} bigger than {h2}: {h1 > h2}')
print(f'Is {h2} smaller than {h3}: {h2 < h3}')
print(f'Is {h2} greater than or equal to {h1}: {h2 >= h1}')
print(f'Which one is biggest in houses: {max(houses)}')
print(f'Which is smallest in houses: {min(houses)}')

""""""
# Is h1: 990 square foot Cape bigger than h2: 846 square foot Ranch: True
# Is h2: 846 square foot Ranch smaller than h3: 1101 square foot Split: True
# Is h2: 846 square foot Ranch greater than or equal to h1: 990 square foot Cape: False
# Which one is biggest in houses: h3: 1101 square foot Split
# Which is smallest in houses: h2: 846 square foot Ranch
# """"""
class House:
def __eq__(self, other):
pass
def __lt__(self, other):
pass
# Methods created by @total_ordering
__le__ = lambda self, other: self < other or self == other
__gt__ = lambda self, other: not (self < other or self == other)
__ge__ = lambda self, other: not (self < other)
__ne__ = lambda self, other: not self == other

到此这篇关于Python类的定义继承调用比较方法技巧的文章就介绍到这了,更多相关Python类的定义内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Anaconda中导出环境的实现步骤

    Anaconda中导出环境的实现步骤

    在 Anaconda 中导出环境是一种常用的做法,可以将当前的环境配置导出到一个文件中,本文主要介绍了Anaconda中导出环境的实现步骤,具有一定的参考价值
    2024-05-05
  • pandas如何处理缺失值

    pandas如何处理缺失值

    这篇文章主要介绍了pandas如何处理缺失值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • OpenCV半小时掌握基本操作之对象测量

    OpenCV半小时掌握基本操作之对象测量

    这篇文章主要介绍了OpenCV基本操作之对象测量,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-09-09
  • Python初学者需要注意的事项小结(python2与python3)

    Python初学者需要注意的事项小结(python2与python3)

    这篇文章主要介绍了Python初学者需要注意的事项小结,包括了python2与python3的一些区别,需要的朋友可以参考下
    2018-09-09
  • Python pyecharts绘制柱状图

    Python pyecharts绘制柱状图

    这篇文章主要介绍了Python pyecharts绘制柱状图,文章介绍的柱状/条形图,通过柱形的高度/条形的宽度来表现数据的大小,感兴趣的小伙伴一起进入文章学习更详细内容吧
    2021-12-12
  • Python 音频生成器的实现示例

    Python 音频生成器的实现示例

    这篇文章主要介绍了Python 音频生成器的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-12-12
  • pandas实现按照多列排序-ascending

    pandas实现按照多列排序-ascending

    这篇文章主要介绍了pandas实现按照多列排序-ascending,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • 在python的WEB框架Flask中使用多个配置文件的解决方法

    在python的WEB框架Flask中使用多个配置文件的解决方法

    所谓配置文件管理,就是在不改变源代码的前提下,拥有两套(甚至多套)配置文件,分别用于开发环境和生产环境,通过命令行选择配置文件
    2014-04-04
  • python对常见数据类型的遍历解析

    python对常见数据类型的遍历解析

    这篇文章主要介绍了python对常见数据类型的遍历解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • 简单了解python中的与或非运算

    简单了解python中的与或非运算

    这篇文章主要介绍了简单了解python中的与或非运算,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-09-09

最新评论