C++ OpenGL实现三角形的绘制

 更新时间:2022年06月24日 14:32:26   作者:代码骑士  
这篇文章主要主要为大家详细介绍了如何利用C++和OpenGL实现三角形的绘制,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起动手尝试一下

一、绘制三角形

1、初始化

(1)初始化GLFW

//初始化GLFW
    glfwInit();//初始化GLFW
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);//设置主版本号
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);//设置次版本号
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);//设置核心模式
    //glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);//MAC OS
    glfwWindowHint(GLFW_RESIZABLE, false);//关闭可调节窗口大小

(2)创建一个窗口

//创建窗口(宽、高、窗口名)
    auto window = glfwCreateWindow(screen_width, screen_hight, "Triangle", nullptr, nullptr);
    if (window == nullptr) {
        std::cout << "Failed to Create OpenGL Context" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);

(3)初始化GLAD

//初始化GLAD
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

(4)创建一个视口

//创建视口
    glViewport(0, 0, screen_width, screen_hight);

初始化代码(全):

#include <glad/glad.h> 
#include <GLFW/glfw3.h>

#include <iostream>

const int screen_width = 800;
const int screen_hight = 600;

int main() {

	//初始化GLFW
	glfwInit();//初始化GLFW
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);//设置主版本号
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);//设置次版本号
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);//设置核心模式
	//glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);//MAC OS
	glfwWindowHint(GLFW_RESIZABLE, false);//关闭可调节窗口大小
	
	//创建窗口(宽、高、窗口名)
	auto window = glfwCreateWindow(screen_width, screen_hight, "Triangle", nullptr, nullptr);
	if (window == nullptr) {
		std::cout << "Failed to Create OpenGL Context" << std::endl;
		glfwTerminate();
		return -1;
	}
	glfwMakeContextCurrent(window);

	//初始化GLAD
	if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
	{
		std::cout << "Failed to initialize GLAD" << std::endl;
		return -1;
	}

	//创建视口
	glViewport(0, 0, screen_width, screen_hight);

	return 0;
}

2、顶点输入

坐标系规定

顶点坐标代码

//三角形的顶点数据
const float triangle[] = {
    //--位置--//
    -0.5f,-0.5f,0.0f,//左下
    0.5f,-0.5f,0.0f,//右下
    0.0f,0.5f,0.0f,//正上
};

3、数据处理

(1)VBO、VAO

//生成并绑定VBO
    GLuint vertex_buffer_object;
    glGenBuffers(1, &vertex_buffer_object);
    glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer_object);
    //将顶点数据绑定至默认的缓冲中
    glBufferData(GL_ARRAY_BUFFER, sizeof(triangle), triangle, GL_STATIC_DRAW);

//生成并绑定VAO
    GLuint vertex_array_object;
    glGenVertexArrays(1, &vertex_array_object);
    glBindVertexArray(vertex_array_object);

(2)顶点属性

//设置顶点属性指针
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float),(void*)0);
    glEnableVertexAttribArray(0);

(3)解绑代码

//设置完成之后就可以解绑VBO、VAO了
    glBindVertexArray(0);
    glBindBuffer(GL_ARRAY_BUFFER, 0);

4、顶点着色器和片段着色器

//顶点着色器源码
    const char* vertex_shader_source =
        "#version 330 core\n"
        "layout (location = 0) in vec3 aPos;\n"
        "void main()\n"
        "{\n"
        "    gl_Position = vec4(aPos,1.0);\n"
        "}\n\0";

//片段着色器源码
    const char* fragment_shader_source =
        "#version 330 core\n"
        "out vec4 FragColor;\n"
        "void main()\n"
        "{\n"
        "    FragColor = vec4(1.0f,0.5f,0.2f,1.0f);\n"
        "}\n\0";

//生成并编译着色器
    //顶点着色器
    int vertex_shader = glCreateShader(GL_VERTEX_SHADER);
    glShaderSource(vertex_shader, 1, &vertex_shader_source, NULL);
    glCompileShader(vertex_shader);
    int success;
    char info_log[512];
    // 检查着色器是否成功编译,如果编译失败,打印错误信息
    glGetShaderiv(vertex_shader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(vertex_shader, 512, NULL, info_log);
        std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << info_log << std::endl;
    }
    // 片段着色器
    int fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
    glShaderSource(fragment_shader, 1, &fragment_shader_source, NULL);
    glCompileShader(fragment_shader);
    // 检查着色器是否成功编译,如果编译失败,打印错误信息
    glGetShaderiv(fragment_shader, GL_COMPILE_STATUS, &success);
    if (!success)
    {
        glGetShaderInfoLog(fragment_shader, 512, NULL, info_log);
        std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << info_log << std::endl;
    }

// 链接顶点和片段着色器至一个着色器程序
    int shader_program = glCreateProgram();
    glAttachShader(shader_program, vertex_shader);
    glAttachShader(shader_program, fragment_shader);
    glLinkProgram(shader_program);
    // 检查着色器是否成功链接,如果链接失败,打印错误信息
    glGetProgramiv(shader_program, GL_LINK_STATUS, &success);
    if (!success) {
        glGetProgramInfoLog(shader_program, 512, NULL, info_log);
        std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << info_log << std::endl;
    }
    // 删除着色器
    glDeleteShader(vertex_shader);
    glDeleteShader(fragment_shader);
// 线框模式
    //glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

5、渲染

//渲染循环
	while (!glfwWindowShouldClose(window)) {

		// 清空颜色缓冲
		glClearColor(0.0f, 0.34f, 0.57f, 1.0f);
		glClear(GL_COLOR_BUFFER_BIT);

		// 使用着色器程序
		glUseProgram(shader_program);

		// 绘制三角形
		glBindVertexArray(vertex_array_object);                                    // 绑定VAO
		glDrawArrays(GL_TRIANGLES, 0, 3);                                          // 绘制三角形
		glBindVertexArray(0);                                                      // 解除绑定

		// 交换缓冲并且检查是否有触发事件(比如键盘输入、鼠标移动等)
		glfwSwapBuffers(window);
		glfwPollEvents();
	}
    // 删除VAO和VBO
    glDeleteVertexArrays(1, &vertex_array_object);
    glDeleteBuffers(1, &vertex_buffer_object);

二、完整代码

代码

#include <glad/glad.h> 
#include <GLFW/glfw3.h>

#include <iostream>

const int screen_width = 800;
const int screen_hight = 600;

//三角形的顶点数据
const float triangle[] = {
	//--位置--//
	-0.5f,-0.5f,0.0f,//左下
	0.5f,-0.5f,0.0f,//右下
	0.0f,0.5f,0.0f,//正上
};

int main() {

	//初始化GLFW
	glfwInit();//初始化GLFW
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);//设置主版本号
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);//设置次版本号
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);//设置核心模式
	//glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);//MAC OS
	glfwWindowHint(GLFW_RESIZABLE, false);//关闭可调节窗口大小

	//创建窗口(宽、高、窗口名)
	auto window = glfwCreateWindow(screen_width, screen_hight, "Triangle", nullptr, nullptr);
	if (window == nullptr) {
		std::cout << "Failed to Create OpenGL Context" << std::endl;
		glfwTerminate();
		return -1;
	}
	glfwMakeContextCurrent(window);

	//初始化GLAD
	if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
	{
		std::cout << "Failed to initialize GLAD" << std::endl;
		return -1;
	}

	//创建视口
	glViewport(0, 0, screen_width, screen_hight);

	//生成并绑定VBO
	GLuint vertex_buffer_object;
	glGenBuffers(1, &vertex_buffer_object);
	glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer_object);
	//将顶点数据绑定至默认的缓冲中
	glBufferData(GL_ARRAY_BUFFER, sizeof(triangle), triangle, GL_STATIC_DRAW);
	//生成并绑定VAO
	GLuint vertex_array_object;
	glGenVertexArrays(1, &vertex_array_object);
	glBindVertexArray(vertex_array_object);

	//设置顶点属性指针
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);//参数:顶点着色器位置值,分量,顶点数据类型,是否标准化,步长、数据偏移量
	glEnableVertexAttribArray(0);//开启0通道

	//设置完成之后就可以解绑VBO、VAO了
	glBindVertexArray(0);
	glBindBuffer(GL_ARRAY_BUFFER, 0);

	//顶点着色器源码
	const char* vertex_shader_source =
		"#version 330 core\n"
		"layout (location = 0) in vec3 aPos;\n"
		"void main()\n"
		"{\n"
		"	gl_Position = vec4(aPos,1.0);\n"
		"}\n\0";

	//片段着色器源码
	const char* fragment_shader_source =
		"#version 330 core\n"
		"out vec4 FragColor;\n"
		"void main()\n"
		"{\n"
		"	FragColor = vec4(1.0f,0.1f,0.1f,1.0f);\n"
		"}\n\0";

	//生成并编译着色器
	//顶点着色器
	int vertex_shader = glCreateShader(GL_VERTEX_SHADER);
	glShaderSource(vertex_shader, 1, &vertex_shader_source, NULL);
	glCompileShader(vertex_shader);
	int success;
	char info_log[512];
	// 检查着色器是否成功编译,如果编译失败,打印错误信息
	glGetShaderiv(vertex_shader, GL_COMPILE_STATUS, &success);
	if (!success)
	{
		glGetShaderInfoLog(vertex_shader, 512, NULL, info_log);
		std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << info_log << std::endl;
	}
	// 片段着色器
	int fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
	glShaderSource(fragment_shader, 1, &fragment_shader_source, NULL);
	glCompileShader(fragment_shader);
	// 检查着色器是否成功编译,如果编译失败,打印错误信息
	glGetShaderiv(fragment_shader, GL_COMPILE_STATUS, &success);
	if (!success)
	{
		glGetShaderInfoLog(fragment_shader, 512, NULL, info_log);
		std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << info_log << std::endl;
	}
	// 链接顶点和片段着色器至一个着色器程序
	int shader_program = glCreateProgram();
	glAttachShader(shader_program, vertex_shader);
	glAttachShader(shader_program, fragment_shader);
	glLinkProgram(shader_program);
	// 检查着色器是否成功链接,如果链接失败,打印错误信息
	glGetProgramiv(shader_program, GL_LINK_STATUS, &success);
	if (!success) {
		glGetProgramInfoLog(shader_program, 512, NULL, info_log);
		std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << info_log << std::endl;
	}
	// 删除着色器
	glDeleteShader(vertex_shader);
	glDeleteShader(fragment_shader);

	// 线框模式
	//glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);

	//渲染循环
	while (!glfwWindowShouldClose(window)) {

		// 清空颜色缓冲
		glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
		glClear(GL_COLOR_BUFFER_BIT);

		// 使用着色器程序
		glUseProgram(shader_program);

		// 绘制三角形
		glBindVertexArray(vertex_array_object);                                    // 绑定VAO
		glDrawArrays(GL_TRIANGLES, 0, 3);                                          // 绘制三角形
		glBindVertexArray(0);                                                      // 解除绑定

		// 交换缓冲并且检查是否有触发事件(比如键盘输入、鼠标移动等)
		glfwSwapBuffers(window);
		glfwPollEvents();
	}

	// 删除VAO和VBO
	glDeleteVertexArrays(1, &vertex_array_object);
	glDeleteBuffers(1, &vertex_buffer_object);

	// 清理所有的资源并正确退出程序
	glfwTerminate();
	return 0;
}

输出

修改尺寸

修改三角形颜色

修改背景颜色

线框模式

输出

以上就是C++ OpenGL实现三角形的绘制的详细内容,更多关于C++ OpenGL绘制三角形的资料请关注脚本之家其它相关文章!

相关文章

  • 详解C++ const修饰符

    详解C++ const修饰符

    const 是 constant 的缩写,const可以帮我们避免无意之中的错误操作,本文给大家介绍C++ const修饰符的相关知识,通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧
    2021-05-05
  • C/C++实现动态数组的示例详解

    C/C++实现动态数组的示例详解

    动态数组相比于静态数组具有更大的灵活性,因为其大小可以在运行时根据程序的需要动态地进行分配和调整,本文为大家介绍了C++实现动态数组的方法,需要的可以参考下
    2023-08-08
  • linux c 查找使用库的cflags与libs的方法详解

    linux c 查找使用库的cflags与libs的方法详解

    本篇文章是对在linux中使用c语言查找使用库的cflags与libs的方法进行了详细的分析介绍,需要的朋友参考下
    2013-05-05
  • 关于C语言和命令行之间的交互问题

    关于C语言和命令行之间的交互问题

    这篇文章主要介绍了C语言和命令行之间的交互,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-07-07
  • C语言接口与实现方法实例详解

    C语言接口与实现方法实例详解

    这篇文章主要介绍了C语言接口与实现方法,包括接口的概念、实现方法及抽象数据类型等,并配合实例予以说明,需要的朋友可以参考下
    2014-09-09
  • C++实现有向图邻接表的构建

    C++实现有向图邻接表的构建

    这篇文章主要为大家详细介绍了C++实现有向图邻接表的构建,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-04-04
  • C语言 sockaddr和sockaddr_in案例详解

    C语言 sockaddr和sockaddr_in案例详解

    这篇文章主要介绍了C语言 sockaddr和sockaddr_in案例详解,本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
    2021-08-08
  • C语言预处理器使用方法讲解

    C语言预处理器使用方法讲解

    C预处理器不是编译器的组成部分,但是它是编译过程中一个单独的步骤。简言之,C预处理器只不过是一个文本替换工具而已,它们会指示编译器在实际编译之前完成所需的预处理。我们将把C预处理器(C Preprocessor)简写为CPP
    2022-12-12
  • 解决C语言中使用scanf连续输入两个字符类型的问题

    解决C语言中使用scanf连续输入两个字符类型的问题

    这篇文章主要介绍了解决C语言中使用scanf连续输入两个字符类型的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • C++ 动态规划算法使用分析

    C++ 动态规划算法使用分析

    动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解
    2022-03-03

最新评论