python数字图像处理之基本形态学滤波

 更新时间:2022年06月29日 08:48:56   作者:denny402  
这篇文章主要为大家介绍了python数字图像处理之基本形态学滤波示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

引言

对图像进行形态学变换。变换对象一般为灰度图或二值图,功能函数放在morphology子模块内。

1、膨胀(dilation)

原理:一般对二值图像进行操作。找到像素值为1的点,将它的邻近像素点都设置成这个值。1值表示白,0值表示黑,因此膨胀操作可以扩大白色值范围,压缩黑色值范围。一般用来扩充边缘或填充小的孔洞。

功能函数:skimage.morphology.dilation(image, selem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

from skimage import data
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=data.checkerboard()
dst1=sm.dilation(img,sm.square(5))  #用边长为5的正方形滤波器进行膨胀滤波
dst2=sm.dilation(img,sm.square(15))  #用边长为15的正方形滤波器进行膨胀滤波
plt.figure('morphology',figsize=(8,8))
plt.subplot(131)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.subplot(132)
plt.title('morphological image')
plt.imshow(dst1,plt.cm.gray)
plt.subplot(133)
plt.title('morphological image')
plt.imshow(dst2,plt.cm.gray)

分别用边长为5或15的正方形滤波器对棋盘图片进行膨胀操作,结果如下:

可见滤波器的大小,对操作结果的影响非常大。一般设置为奇数。

除了正方形的滤波器外,滤波器的形状还有一些,现列举如下:

morphology.square: 正方形

morphology.disk:  平面圆形

morphology.ball: 球形

morphology.cube: 立方体形

morphology.diamond: 钻石形

morphology.rectangle: 矩形

morphology.star: 星形

morphology.octagon: 八角形

morphology.octahedron: 八面体

注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:

skimage.morphology.binary_dilation(image, selem=None)

用此函数比处理灰度图像要快。

2、腐蚀(erosion)

函数:skimage.morphology.erosion(image, selem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

和膨胀相反的操作,将0值扩充到邻近像素。扩大黑色部分,减小白色部分。可用来提取骨干信息,去掉毛刺,去掉孤立的像素。

from skimage import data
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=data.checkerboard()
dst1=sm.erosion(img,sm.square(5))  #用边长为5的正方形滤波器进行膨胀滤波
dst2=sm.erosion(img,sm.square(25))  #用边长为25的正方形滤波器进行膨胀滤波
plt.figure('morphology',figsize=(8,8))
plt.subplot(131)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.subplot(132)
plt.title('morphological image')
plt.imshow(dst1,plt.cm.gray)
plt.subplot(133)
plt.title('morphological image')
plt.imshow(dst2,plt.cm.gray)

注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:

skimage.morphology.binary_erosion(image, selem=None)

用此函数比处理灰度图像要快。

3、开运算(opening)

函数:skimage.morphology.openning(image, selem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

先腐蚀再膨胀,可以消除小物体或小斑块。

from skimage import io,color
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=color.rgb2gray(io.imread('d:/pic/mor.png'))
dst=sm.opening(img,sm.disk(9))  #用边长为9的圆形滤波器进行膨胀滤波
plt.figure('morphology',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.axis('off')
plt.subplot(122)
plt.title('morphological image')
plt.imshow(dst,plt.cm.gray)
plt.axis('off')

注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:

skimage.morphology.binary_opening(image, selem=None)

用此函数比处理灰度图像要快。

4、闭运算(closing)

函数:skimage.morphology.closing(image, selem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

先膨胀再腐蚀,可用来填充孔洞。

from skimage import io,color
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=color.rgb2gray(io.imread('d:/pic/mor.png'))
dst=sm.closing(img,sm.disk(9))  #用边长为5的圆形滤波器进行膨胀滤波
plt.figure('morphology',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.axis('off')
plt.subplot(122)
plt.title('morphological image')
plt.imshow(dst,plt.cm.gray)
plt.axis('off')

注意,如果处理图像为二值图像(只有0和1两个值),则可以调用:

skimage.morphology.binary_closing(image, selem=None)

用此函数比处理灰度图像要快。

5、白帽(white-tophat)

函数:skimage.morphology.white_tophat(image, selem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

将原图像减去它的开运算值,返回比结构化元素小的白点

from skimage import io,color
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=color.rgb2gray(io.imread('d:/pic/mor.png'))
dst=sm.white_tophat(img,sm.square(21))  
plt.figure('morphology',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.axis('off')
plt.subplot(122)
plt.title('morphological image')
plt.imshow(dst,plt.cm.gray)
plt.axis('off')

6、黑帽(black-tophat)

函数:skimage.morphology.black_tophat(image, selem=None)

selem表示结构元素,用于设定局部区域的形状和大小。

将原图像减去它的闭运算值,返回比结构化元素小的黑点,且将这些黑点反色。

from skimage import io,color
import skimage.morphology as sm
import matplotlib.pyplot as plt
img=color.rgb2gray(io.imread('d:/pic/mor.png'))
dst=sm.black_tophat(img,sm.square(21))  
plt.figure('morphology',figsize=(8,8))
plt.subplot(121)
plt.title('origin image')
plt.imshow(img,plt.cm.gray)
plt.axis('off')
plt.subplot(122)
plt.title('morphological image')
plt.imshow(dst,plt.cm.gray)
plt.axis('off')

以上就是python数字图像处理之基本形态学滤波的详细内容,更多关于python数字图像形态学滤波的资料请关注脚本之家其它相关文章!

相关文章

  • Python全栈之推导式和生成器

    Python全栈之推导式和生成器

    这篇文章主要为大家介绍了Python推导式和生成器,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-12-12
  • Python读取mat文件,并转为csv文件的实例

    Python读取mat文件,并转为csv文件的实例

    今天小编就为大家分享一篇Python读取mat文件,并转为csv文件的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • python重试装饰器示例

    python重试装饰器示例

    python 写一些网络服务的时候总会抛出一些异常,当前任务就被终止了,利用@装饰器,写一个重试的装饰器,下面是实现示例,需要的朋友可以参考下
    2014-02-02
  • python 申请内存空间,用于创建多维数组的实例

    python 申请内存空间,用于创建多维数组的实例

    今天小编就为大家分享一篇python 申请内存空间,用于创建多维数组的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • Python实现像awk一样分割字符串

    Python实现像awk一样分割字符串

    这篇文章主要介绍了Python实现像awk一样分割字符串,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-09-09
  • django 取消csrf限制的实例

    django 取消csrf限制的实例

    这篇文章主要介绍了django 取消csrf限制的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • Pandas DataFrame分组求和、分组乘积的实例

    Pandas DataFrame分组求和、分组乘积的实例

    这篇文章主要介绍了Pandas DataFrame分组求和、分组乘积的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02
  • python 对象真假值的实例(哪些视为False)

    python 对象真假值的实例(哪些视为False)

    这篇文章主要介绍了python 对象真假值的实例(哪些视为False),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • Python中exit、return、sys.exit()等使用实例和区别

    Python中exit、return、sys.exit()等使用实例和区别

    这篇文章主要介绍了Python中exit、return、sys.exit()等使用实例和区别,本文是一个实际项目中的总结,需要的朋友可以参考下
    2015-05-05
  • python批量复制图片到另一个文件夹

    python批量复制图片到另一个文件夹

    这篇文章主要为大家详细介绍了python批量复制图片到另一个文件夹,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-09-09

最新评论