caffe的python接口之手写数字识别mnist实例

 更新时间:2022年06月29日 12:25:48   作者:denny402  
这篇文章主要为大家介绍了caffe的python接口之手写数字识别mnist实例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

引言

深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了。由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文:

数据层及参数

视觉层及参数

solver配置文件及参数

一、数据准备

官网提供的mnist数据并不是图片,但我们以后做的实际项目可能是图片。因此有些人并不知道该怎么办。在此我将mnist数据进行了转化,变成了一张张的图片,我们练习就从图片开始。mnist图片数据我放在了百度云盘。

mnist图片数据点击下载

数据分成了训练集(60000张共10类)和测试集(共10000张10类),每个类别放在一个单独的文件夹里。并且将所有的图片,都生成了txt列表清单(train.txt和test.txt)。大家下载下来后,直接解压到当前用户根目录下就可以了。由于我是在windows下压缩的,因此是winrar文件。如果大家要在linux下解压缩,需要安装rar的linux版本,也是十分简单

sudo apt-get install rar

二、导入caffe库,并设定文件路径

我是将mnist直接放在根目录下的,所以代码如下:

# -*- coding: utf-8 -*-
import caffe
from caffe import layers as L,params as P,proto,to_proto
#设定文件的保存路径
root='/home/xxx/'                           #根目录
train_list=root+'mnist/train/train.txt'     #训练图片列表
test_list=root+'mnist/test/test.txt'        #测试图片列表
train_proto=root+'mnist/train.prototxt'     #训练配置文件
test_proto=root+'mnist/test.prototxt'       #测试配置文件
solver_proto=root+'mnist/solver.prototxt'   #参数文件

其中train.txt 和test.txt文件已经有了,其它三个文件,我们需要自己编写。

此处注意:一般caffe程序都是先将图片转换成lmdb文件,但这样做有点麻烦。因此我就不转换了,我直接用原始图片进行操作,所不同的就是直接用图片操作,均值很难计算,因此可以不减均值。

二、生成配置文件

配置文件实际上就是一些txt文档,只是后缀名是prototxt,我们可以直接到编辑器里编写,也可以用代码生成。此处,我用python来生成。

#编写一个函数,生成配置文件prototxt
def Lenet(img_list,batch_size,include_acc=False):
    #第一层,数据输入层,以ImageData格式输入
    data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,
        transform_param=dict(scale= 0.00390625))
    #第二层:卷积层
    conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
    #池化层
    pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    #卷积层
    conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
    #池化层
    pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    #全连接层
    fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
    #激活函数层
    relu3=L.ReLU(fc3, in_place=True)
    #全连接层
    fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
    #softmax层
    loss = L.SoftmaxWithLoss(fc4, label)
    if include_acc:             # test阶段需要有accuracy层
        acc = L.Accuracy(fc4, label)
        return to_proto(loss, acc)
    else:
        return to_proto(loss)
def write_net():
    #写入train.prototxt
    with open(train_proto, 'w') as f:
        f.write(str(Lenet(train_list,batch_size=64)))
    #写入test.prototxt    
    with open(test_proto, 'w') as f:
        f.write(str(Lenet(test_list,batch_size=100, include_acc=True)))

配置文件里面存放的,就是我们所说的network。我这里生成的network,可能和原始的Lenet不太一样,不过影响不大。

三、生成参数文件solver

同样,可以在编辑器里面直接书写,也可以用代码生成。

#编写一个函数,生成参数文件
def gen_solver(solver_file,train_net,test_net):
    s=proto.caffe_pb2.SolverParameter()
    s.train_net =train_net
    s.test_net.append(test_net)
    s.test_interval = 938    #60000/64,测试间隔参数:训练完一次所有的图片,进行一次测试  
    s.test_iter.append(100)  #10000/100 测试迭代次数,需要迭代100次,才完成一次所有数据的测试
    s.max_iter = 9380       #10 epochs , 938*10,最大训练次数
    s.base_lr = 0.01    #基础学习率
    s.momentum = 0.9    #动量
    s.weight_decay = 5e-4  #权值衰减项
    s.lr_policy = 'step'   #学习率变化规则
    s.stepsize=3000         #学习率变化频率
    s.gamma = 0.1          #学习率变化指数
    s.display = 20         #屏幕显示间隔
    s.snapshot = 938       #保存caffemodel的间隔
    s.snapshot_prefix =root+'mnist/lenet'   #caffemodel前缀
    s.type ='SGD'         #优化算法
    s.solver_mode = proto.caffe_pb2.SolverParameter.GPU    #加速
    #写入solver.prototxt
    with open(solver_file, 'w') as f:
        f.write(str(s))

四、开始训练模型

训练过程中,也在不停的测试。

#开始训练
def training(solver_proto):
    caffe.set_device(0)
    caffe.set_mode_gpu()
    solver = caffe.SGDSolver(solver_proto)
    solver.solve()

最后,调用以上的函数就可以了。

if __name__ == '__main__':
    write_net()
    gen_solver(solver_proto,train_proto,test_proto) 
    training(solver_proto)

五、完成的python文件

mnist.py

# -*- coding: utf-8 -*-
import caffe
from caffe import layers as L,params as P,proto,to_proto
#设定文件的保存路径
root='/home/xxx/'                           #根目录
train_list=root+'mnist/train/train.txt'     #训练图片列表
test_list=root+'mnist/test/test.txt'        #测试图片列表
train_proto=root+'mnist/train.prototxt'     #训练配置文件
test_proto=root+'mnist/test.prototxt'       #测试配置文件
solver_proto=root+'mnist/solver.prototxt'   #参数文件
#编写一个函数,生成配置文件prototxt
def Lenet(img_list,batch_size,include_acc=False):
    #第一层,数据输入层,以ImageData格式输入
    data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,
        transform_param=dict(scale= 0.00390625))
    #第二层:卷积层
    conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
    #池化层
    pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    #卷积层
    conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
    #池化层
    pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    #全连接层
    fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
    #激活函数层
    relu3=L.ReLU(fc3, in_place=True)
    #全连接层
    fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
    #softmax层
    loss = L.SoftmaxWithLoss(fc4, label)
    if include_acc:             # test阶段需要有accuracy层
        acc = L.Accuracy(fc4, label)
        return to_proto(loss, acc)
    else:
        return to_proto(loss)
def write_net():
    #写入train.prototxt
    with open(train_proto, 'w') as f:
        f.write(str(Lenet(train_list,batch_size=64)))
    #写入test.prototxt    
    with open(test_proto, 'w') as f:
        f.write(str(Lenet(test_list,batch_size=100, include_acc=True)))
#编写一个函数,生成参数文件
def gen_solver(solver_file,train_net,test_net):
    s=proto.caffe_pb2.SolverParameter()
    s.train_net =train_net
    s.test_net.append(test_net)
    s.test_interval = 938    #60000/64,测试间隔参数:训练完一次所有的图片,进行一次测试  
    s.test_iter.append(500)  #50000/100 测试迭代次数,需要迭代500次,才完成一次所有数据的测试
    s.max_iter = 9380       #10 epochs , 938*10,最大训练次数
    s.base_lr = 0.01    #基础学习率
    s.momentum = 0.9    #动量
    s.weight_decay = 5e-4  #权值衰减项
    s.lr_policy = 'step'   #学习率变化规则
    s.stepsize=3000         #学习率变化频率
    s.gamma = 0.1          #学习率变化指数
    s.display = 20         #屏幕显示间隔
    s.snapshot = 938       #保存caffemodel的间隔
    s.snapshot_prefix = root+'mnist/lenet'   #caffemodel前缀
    s.type ='SGD'         #优化算法
    s.solver_mode = proto.caffe_pb2.SolverParameter.GPU    #加速
    #写入solver.prototxt
    with open(solver_file, 'w') as f:
        f.write(str(s))
#开始训练
def training(solver_proto):
    caffe.set_device(0)
    caffe.set_mode_gpu()
    solver = caffe.SGDSolver(solver_proto)
    solver.solve()
#
if __name__ == '__main__':
    write_net()
    gen_solver(solver_proto,train_proto,test_proto) 
    training(solver_proto)

我将此文件放在根目录下的mnist文件夹下,因此可用以下代码执行

sudo python mnist/mnist.py

在训练过程中,会保存一些caffemodel。多久保存一次,保存多少次,都可以在solver参数文件里进行设置。

我设置为训练10 epoch,9000多次,测试精度可以达到99%

以上就是caffe的python接口之手写数字识别mnist实例的详细内容,更多关于caffe python手写数字识别mnist的资料请关注脚本之家其它相关文章!

相关文章

  • Python 实时获取任务请求对应的Nginx日志的方法

    Python 实时获取任务请求对应的Nginx日志的方法

    本文给大家分享Python 实时获取任务请求对应的Nginx日志的方法,本文通过实例代码给大家介绍的非常详细,需要的朋友参考下吧
    2021-07-07
  • Python中使用urllib2模块编写爬虫的简单上手示例

    Python中使用urllib2模块编写爬虫的简单上手示例

    这篇文章主要介绍了Python中使用urllib2模块编写爬虫的简单上手示例,文中还介绍到了相关异常处理功能的添加,需要的朋友可以参考下
    2016-01-01
  • Python3中的最大整数和最大浮点数实例

    Python3中的最大整数和最大浮点数实例

    今天小编就为大家分享一篇Python3中的最大整数和最大浮点数实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • python数字类型math库原理解析

    python数字类型math库原理解析

    这篇文章主要介绍了python数字类型math库原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03
  • Python实现邮件发送功能的示例详解

    Python实现邮件发送功能的示例详解

    Python对SMTP支持有smtplib和email两个模块,email负责构造邮件,smtplib负责发送邮件。本文将以qq邮箱为例,实现自己给自己发送邮件的功能,感兴趣的可以了解一下
    2022-11-11
  • Python之字典添加元素的几种方法

    Python之字典添加元素的几种方法

    这篇文章主要介绍了Python之字典添加元素的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-09-09
  • Python使用multiprocessing实现多进程

    Python使用multiprocessing实现多进程

    当我们工作中涉及到处理大量数据、并行计算或并发任务时,Python的multiprocessing模块是一个强大而实用的工具,在本文中,我们将探索如何使用multiprocessing模块实现多进程编程,将介绍进程池的概念和用法,需要的朋友可以参考下
    2024-10-10
  • CentOS 7下安装Python 3.5并与Python2.7兼容并存详解

    CentOS 7下安装Python 3.5并与Python2.7兼容并存详解

    这篇文章主要给大家介绍了在CentOS 7下安装Python 3.5并与Python2.7兼容并存的相关资料,文中将安装步骤介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面跟着小编来一起学习学习吧。
    2017-07-07
  • Pytest参数化parametrize使用代码实例

    Pytest参数化parametrize使用代码实例

    这篇文章主要介绍了Pytest参数化parametrize使用代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Python机器学习之底层实现KNN

    Python机器学习之底层实现KNN

    今天给大家带来的是关于Python机器学习的相关知识,文章围绕着Python底层实现KNN展开,文中有非常详细的解释及代码示例,需要的朋友可以参考下
    2021-06-06

最新评论