Caffe卷积神经网络视觉层Vision Layers及参数详解

 更新时间:2022年06月29日 11:31:00   作者:denny402  
这篇文章主要为大家介绍了Caffe卷积神经网络视觉层Vision Layers及参数详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪

引言

所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe卷积神经网络数据层及参数

本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling,Local Response Normalization (LRN), im2col等层。

1、Convolution层:

就是卷积层,是卷积神经网络(CNN)的核心层。

层类型:Convolution

lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。

如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。

在后面的convolution_param中,我们可以设定卷积层的特有参数。

必须设置的参数:

  • num_output: 卷积核(filter)的个数
  • kernel_size: 卷积核的大小。如果卷积核的长和宽不等,需要用kernel_h和kernel_w分别设定

其它参数:

  • stride: 卷积核的步长,默认为1。也可以用stride_h和stride_w来设置。
  • pad: 扩充边缘,默认为0,不扩充。 扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充了4个像素,这样卷积运算之后的特征图就不会变小。也可以通过pad_h和pad_w来分别设定。
  • weight_filler: 权值初始化。 默认为“constant",值全为0,很多时候我们用"xavier"算法来进行初始化,也可以设置为”gaussian"
  • bias_filler: 偏置项的初始化。一般设置为"constant",值全为0。
  • bias_term: 是否开启偏置项,默认为true, 开启

group: 分组,默认为1组。如果大于1,我们限制卷积的连接操作在一个子集内。如果我们根据图像的通道来分组,那么第i个输出分组只能与第i个输入分组进行连接。

如果设置stride为1,前后两次卷积部分存在重叠。如果设置pad=(kernel_size-1)/2,则运算后,宽度和高度不变。

示例:

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
  }
  param {
    lr_mult: 2
  }
  convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
    }
  }
}

2、Pooling层

也叫池化层,为了减少运算量和数据维度而设置的一种层。

层类型:Pooling

必须设置的参数:

kernel_size: 池化的核大小。也可以用kernel_h和kernel_w分别设定。

其它参数:

  • pool: 池化方法,默认为MAX。目前可用的方法有MAX, AVE, 或STOCHASTIC
  • pad: 和卷积层的pad的一样,进行边缘扩充。默认为0
  • stride: 池化的步长,默认为1。一般我们设置为2,即不重叠。也可以用stride_h和stride_w来设置。

示例:

layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}

pooling层的运算方法基本是和卷积层是一样的。

如果设置stride为2,前后两次卷积部分不重叠。100*100的特征图池化后,变成50*50.

3、Local Response Normalization (LRN)层

此层是对一个输入的局部区域进行归一化,达到“侧抑制”的效果。可去搜索AlexNet或GoogLenet,里面就用到了这个功能

层类型:LRN

参数:全部为可选,没有必须

  • local_size: 默认为5。如果是跨通道LRN,则表示求和的通道数;如果是在通道内LRN,则表示求和的正方形区域长度。
  • alpha: 默认为1,归一化公式中的参数。
  • beta: 默认为5,归一化公式中的参数。
  • norm_region: 默认为ACROSS_CHANNELS。有两个选择,ACROSS_CHANNELS表示在相邻的通道间求和归一化。WITHIN_CHANNEL表示在一个通道内部特定的区域内进行求和归一化。与前面的local_size参数对应。

归一化公式:对于每一个输入, 去除以

得到归一化后的输出

示例:

layers {
  name: "norm1"
  type: LRN
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}

4、im2col层

如果对matlab比较熟悉的话,就应该知道im2col是什么意思。它先将一个大矩阵,重叠地划分为多个子矩阵,对每个子矩阵序列化成向量,最后得到另外一个矩阵。

看一看图就知道了:

在caffe中,卷积运算就是先对数据进行im2col操作,再进行内积运算(inner product)。这样做,比原始的卷积操作速度更快。

看看两种卷积操作的异同:

以上就是Caffe卷积神经网络视觉层Vision Layers及参数详解的详细内容,更多关于Caffe视觉层Vision Layers的资料请关注脚本之家其它相关文章!

相关文章

  • python使用os.listdir和os.walk获得文件的路径的方法

    python使用os.listdir和os.walk获得文件的路径的方法

    本篇文章主要介绍了python使用os.listdir和os.walk获得文件的路径的方法,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-12-12
  • Python Matplotlib中使用plt.savefig存储图片的方法举例

    Python Matplotlib中使用plt.savefig存储图片的方法举例

    pytorch下保存图像有很多种方法,但是这些基本上都是基于图像处理的,将图像的像素指定一定的维度,下面这篇文章主要给大家介绍了关于Python Matplotlib中使用plt.savefig存储图片的相关资料,需要的朋友可以参考下
    2023-02-02
  • python中利用Future对象回调别的函数示例代码

    python中利用Future对象回调别的函数示例代码

    最近在学习python,所以这篇文章主要给大家介绍了关于在python中利用Future对象回调别的函数的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习下吧。
    2017-09-09
  • Python 抖音评论数据抓取分析

    Python 抖音评论数据抓取分析

    大家好,最近抖音张同学突然火了,两个月涨粉一千多万。今天这篇文章,我抓取了张同学的视频的评论数据,想从文本分析的角度,挖掘一下大家对张同学感兴趣的点
    2022-01-01
  • 使用python判断你是青少年还是老年人

    使用python判断你是青少年还是老年人

    今天来给大家讲讲python中最基本的 if 条件语句,这几乎是所有编程语言中都存在的语句,只是语法结构稍有不同。这篇文章给大家分享使用python判断你是青少年还是老年人,感兴趣的朋友一起看看吧
    2018-11-11
  • Python调用JavaScript代码的方法

    Python调用JavaScript代码的方法

    这篇文章主要介绍了Python调用JavaScript代码的方法,帮助大家在不同场景里,采用的最佳调用方式,提高程序的性能,感兴趣的朋友可以了解下
    2020-10-10
  • python爬虫parsel-css选择器的具体用法

    python爬虫parsel-css选择器的具体用法

    本文主要介绍了python爬虫parsel-css选择器的具体用法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-06-06
  • Python实现GIF图倒放

    Python实现GIF图倒放

    这篇文章主要介绍了Python如何实现GIF图倒放,文中讲解非常细致,帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2020-07-07
  • python中执行shell的两种方法总结

    python中执行shell的两种方法总结

    这篇文章主要介绍了python中执行shell的两种方法,有两种方法可以在Python中执行SHELL程序,方法一是使用Python的commands包,方法二则是使用subprocess包,这两个包均是Python现有的内置模块。需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-01-01
  • Python使用imagehash库生成ahash算法的示例代码

    Python使用imagehash库生成ahash算法的示例代码

    aHash、pHash、dHash是常用的图像相似度识别算法,本文将利用Python中的imagehash库生成这一算法,从而实现计算图片相似度,感兴趣的可以了解一下
    2022-11-11

最新评论