C++回溯与分支限界算法分别解决背包问题详解

 更新时间:2022年06月30日 09:37:55   作者:成就一亿技术人  
给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?下面我们分别用回溯与分支限界方法解决

算法思想

分支限界法与回溯法的求解目标不同。

回溯法的求解目标是找出解空间中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出使某一目标函数值达到极大或极小的解,即在某种意义下的最优解。

由于求解目标不同,导致分支限界法与回溯法对解空间的搜索方式也不相同。

回溯法以深度优先的方式搜索解空间,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间。

回溯法对解空间做深度优先搜索时,有递归回溯和迭代回溯(非递归)两种方法,但一般情况下用递归方法实现回溯法。

常见的两种分支限界法

 先进先出(FIFO)队列式:在先进先出的分支限界法中,用队列作为组织活结点表的数据结构,并按照队列先进先出的原则选择结点作为扩展结点。  

   优先队列(PQ):用优先队列作为组织活结点表的数据结构。

回溯代码

#include<stdio.h>
int n,c,bestp;//物品的个数,背包的容量,最大价值
int p[10000],w[10000],x[10000],bestx[10000];//物品的价值,物品的重量,x[i]暂存物品的选中情况,物品的选中情况
void Backtrack(int i,int cp,int cw)
{ //cw当前包内物品重量,cp当前包内物品价值
    int j;
    if(i>n)//回溯结束
    {
        if(cp>bestp)
        {
            bestp=cp;
            for(i=0;i<=n;i++) bestx[i]=x[i];
        }
    }
    else 
        for(j=0;j<=1;j++)  
        {
            x[i]=j;
            if(cw+x[i]*w[i]<=c)  
            {
                cw+=w[i]*x[i];
                cp+=p[i]*x[i];
                Backtrack(i+1,cp,cw);
                cw-=w[i]*x[i];
                cp-=p[i]*x[i];
            }
        }
}
int main()
{
    int i;
    bestp=0; 
    printf("请输入背包最大容量:\n");
    scanf("%d",&c);
    printf("请输入物品个数:\n");
    scanf("%d",&n);
    printf("请依次输入物品的重量:\n");
    for(i=1;i<=n;i++) 
        scanf("%d",&w[i]);
    printf("请依次输入物品的价值:\n");
    for(i=1;i<=n;i++) 
        scanf("%d",&p[i]);
    Backtrack(1,0,0);
    printf("最大价值为:\n");
    printf("%d\n",bestp);
    printf("被选中的物品依次是(0表示未选中,1表示选中)\n");
    for(i=1;i<=n;i++) 
        printf("%d ",bestx[i]);
    printf("\n");
    return 0;
}

回溯结果

分支限界代码

#include<iostream>
#include<queue>
using namespace std;
const int maxn=99; 
int n,c;
int w[maxn];
int v[maxn];
int bestv=0;
int bestx[maxn];
int total=1;        //解空间中的节点数累计,全局变量 
struct nodetype        //队列中的结点类型
{
    int no;            //结点编号,从1开始 
    int i;            //当前结点在搜索空间中的层次 
    int w;            //当前结点的总重量 
    int v;            //当前结点的总价值 
    int x[maxn];    //当前结点包含的解向量 
    double ub;        //上界 
};
void input()
{
    cout<<"请输入物品的个数:"<<endl;
    cin>>n;
    cout<<"请输入每个物品的重量及价值(如5 4):"<<endl;
    for(int i = 1; i <= n; i++)
    {
        cin>>w[i]>>v[i];
    }
    cout<<"请输入背包的容量:"<<endl;
    cin>>c;
}
void bound(nodetype &e)        //计算分支结点e的上界 
{
    int i=e.i+1;        //考虑结点e的余下物品
    int sumw=e.w;
    double sumv=e.v;
    while((sumw+w[i]<=c)&&i<=n) 
    {
        sumw+=w[i];
        sumv+=v[i];
        i++;
    }
    if(i<=n)            //余下物品只能部分装入 
    e.ub=sumv+(c-sumw)*v[i]/w[i];
    else e.ub=sumv; 
} 
void enqueue(nodetype e,queue<nodetype> &qu)
//结点e进队qu 
{
    if(e.i==n)                //到达叶子节点,不在扩展对应一个解 
    {
        if(e.v>bestv)        //找到更大价值的解 
        {
            bestv=e.v;
            for(int j=1;j<=n;j++)
            bestx[j]=e.x[j];
        }
    }
    else qu.push(e);        //非叶子结点进队
} 
void bfs()
{
    int j;
    nodetype e,e1,e2;
    queue<nodetype> qu;
    e.i=0;
    e.w=0;
    e.v=0;
    e.no=total++;
    for(j=1;j<=n;j++)
    e.x[j]=0;
    bound(e);
    qu.push(e);
    while(!qu.empty())
    {
        e=qu.front();qu.pop();    //出队结点e 
        if(e.w+w[e.i+1]<=c)        //剪枝,检查左孩子结点 
        {
            e1.no=total++;        //建立左孩子结点 
            e1.i=e.i+1;
            e1.w=e.w+w[e1.i];
            e1.v=e.v+v[e1.i];
            for(j=1;j<=n;j++)
            e1.x[j]=e.x[j];
            e1.x[e1.i]=1;
            bound(e1);        //求左孩子的上界 
            enqueue(e1,qu);    //左孩子结点进队 
        }
        e2.no=total++;
        e2.i=e.i+1;
        e2.w=e.w;
        e2.v=e.v; 
        for(j=1;j<=n;j++)
            e2.x[j]=e.x[j];
        e2.x[e2.i]=0;
        bound(e2);
        if(e2.ub>bestv)        //若右孩子结点可行,则进队,否则被剪枝 
        enqueue(e2,qu);    
    }
} 
void output()
{
    cout<<"最优值是:"<<bestv<<endl;
    cout<<"(";
    for(int i=1;i<=n;i++)
        cout<<bestx[i]<<" ";
    cout<<")";
}
int main()
{
    input();
    bfs();
    output();
    return 0;
 } 

分支限界结果

到此这篇关于C++回溯与分支限界算法分别解决背包问题详解的文章就介绍到这了,更多相关C++背包问题内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:

相关文章

  • C语言中时间戳转换成时间字符串的方法

    C语言中时间戳转换成时间字符串的方法

    在PE格式里有个字段是文件的创建时间戳,我想把转成字符串,今天小编给大家分享一段代码,可以比较直观的看出,需要的的朋友参考下
    2017-02-02
  • c++中explicit与mutable关键字的深入探究

    c++中explicit与mutable关键字的深入探究

    这篇文章主要给大家介绍了关于c++中explicit与mutable关键字的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-05-05
  • C语言菜鸟基础教程之for循环

    C语言菜鸟基础教程之for循环

    c语言中的for循环语句使用最为灵活,不仅可以用于循环次数已经确定的情况,而且可以用于循环次数不确定而只给出循环结束条件的情况,它完全可以代替while语句.
    2017-10-10
  • C++ Protobuf的学习使用指南

    C++ Protobuf的学习使用指南

    protocol buffers是一种语言无关、平台无关、可扩展的序列化结构数据的方法,它可用于(数据)通信协议、数据存储等,下面就来跟随小编一起简单学习一下它的使用吧
    2023-07-07
  • C++ 类的赋值运算符''''=''''重载的方法实现

    C++ 类的赋值运算符''''=''''重载的方法实现

    这篇文章主要介绍了C++ 类的赋值运算符'='重载的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-02-02
  • C++标准库介绍及使用string类的详细过程

    C++标准库介绍及使用string类的详细过程

    C++中将string封装为单独的类,string 类是 C++ 标准库中的一个非常重要的类,用于表示和操作字符串,这篇文章主要介绍了C++标准库介绍及使用string类,需要的朋友可以参考下
    2024-08-08
  • MFC程序中使用QT开发界面的实现步骤

    MFC程序中使用QT开发界面的实现步骤

    本文主要介绍了MFC程序中使用QT开发界面的实现步骤,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-12-12
  • C++ OpenCV绘制简易直方图DrawHistImg

    C++ OpenCV绘制简易直方图DrawHistImg

    本文主要介绍了一个能绘制简易直方图的简单函数DrawHistImg,可以帮助大家快速掌握绘制的原理,可以根据自己的创意对其进行改善和补充。需要的朋友可以参考一下
    2021-12-12
  • C语言二维数组应用之井字棋游戏

    C语言二维数组应用之井字棋游戏

    这篇文章主要为大家详细介绍了C语言二维数组应用之井字棋游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-06-06
  • C++实现LeetCode(71.简化路径)

    C++实现LeetCode(71.简化路径)

    这篇文章主要介绍了C++实现LeetCode(71.简化路径),本篇文章通过简要的案例,讲解了该项技术的了解与使用,以下就是详细内容,需要的朋友可以参考下
    2021-07-07

最新评论