Python matplotlib如何简单绘制不同类型的表格

 更新时间:2022年07月01日 10:21:58   作者:桜キャンドル淵  
通过Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等,下面这篇文章主要给大家介绍了关于Python matplotlib如何简单绘制不同类型表格的相关资料,需要的朋友可以参考下

载入库

绘制表格我们需要用到python库中的matplotlib库

import matplotlib.pyplot as plt

一、折线图

# 绘制一条线是,x轴可以省略,默认用y轴数据的索引替代
plt.plot([0, 2, 4, 6, 8])  # 默认Y轴坐标,x轴按12345……算
plt.show()

plt.plot([0, 2, 4, 6, 8], [1, 5, 3, 9, 7])  # x轴坐标值,Y轴坐标值
plt.show()

 接下来让我们看看怎么才能绘制更加炫酷的折线图

date = [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
eurcny=[9, 3, 5, 7, 0, 10, 6, 1, 1, 42, 12, 3, 42, 4, 37, 45, 18, 481]
plt.plot(
    date,  # x轴数据,日期
    eurcny,  # y轴数据,收盘价
    color='r',  # 线条颜色
    linestyle='--',  # 线条风格
    linewidth=1.0,# 线条粗细
    marker='o',  # 标记风格
    markerfacecolor='#ffff00',  # 标记颜色
    markersize=10,  # 标记大小
    alpha=0.5,  # 透明度
)
plt.show()

 二、散点图

x = [1, 3, 5, 7, 9, 11, 13, 15, 17]
y = [2, -5, 19, 3, 5, 8, 12, 6, 1]
 
# 绘图
plt.scatter(x, y)
plt.show()

 接下来让我们看看如何绘制更加炫酷的散点图

x = [1, 3, 5, 7, 9, 11, 13, 15, 17]
y = [2, -5, 19, 3, 5, 8, 12, 6, 1]
plt.scatter(
    x,  # x轴
    y,  # y轴
 
    color='r',  # 颜色
    marker='o',  # 样式
    linewidth=20,  # 线宽
    alpha=0.3,  # 透明度
    # 散点大小,用于绘制气泡图,在散点图的基础上又增加了一个维度
    s=[100, 300, 500, 700, 200, 400, 600, 800, 1000],  # 大小
)
plt.show()

三、条形图

x=[1,2,3,4,5]
y=[1,2,3,4,5]
plt.barh(
	x,#横条离开x轴的距离
	y,#横条长度
	height=0.5,#横条粗细
    color='g',
)
plt.show()

四、柱状图 

x=[1,2,3,4,5]
y=[3,6,1,8,2]
#柱状图,x轴为单根主张,y轴为柱子高度,可选参数width用于柱子粗细
plt.bar(x,y)

如何绘制更加炫酷的柱状图 

#男生平均分,语文/数学/英语/物理/化学
boy=[85.5,91,72,59,66]
#女生平均分
girl=[94,82,89.5,62,49]
 
#科目坐标
course=[1,2,3,4,5]
 
#绘图,男生
plt.bar(
	course,#x轴,科目
	boy,#y轴,男生成绩
	color='g',#颜色
	width=0.3,
	alpha=0.3,
)
#绘图,女生
#科目坐标
course2=[1.3,2.3,3.3,4.3,5.3]
plt.bar(
	course2,#x轴,科目
	girl,#y轴,女生成绩
	color='r',#颜色
	width=0.3,
)
plt.show()

 五、饼状图

p=[15,30,45,10,20]
plt.pie(p)
plt.pie(p,labels=['china','russia','india','amarica','japan'],autopct='%1.1f%%')
plt.show()

如何绘制更加炫酷的饼图

#国名
mark=['china','russia','india','amarica','japan']
#各国战9军总军费的比例
percent=[0.55,0.144,0.321,0.312,0.312]
plt.pie(
	percent,#百分比
    autopct='%1.1f%%',#显示百分比方式
	labels=mark,#名称
	explode=(0.0,0.1,0.0,0.0,0.0)#突出块,突出比例
)
plt.show()

六、直方图 

#1班成绩直方图
h1=[88.2,83.4,84.5,83.4,43,43,7,43,32,
	3,83.4,84.5,83.4,42,43,43,5,32,
	88.2,3,84.5,83.4,45,43,9,43,32,
	7,81,84.5,83.4,4,8,43,43,32,
	88.2,83,84.5,83.4,45,7,43,43,32,
	88.2,3,84.5,83.4]
plt.hist(h1)
plt.show()

更加炫酷的直方图

#1班成绩直方图
h1=[88.2,83.4,84.5,83.4,43,43,7,43,32,
	3,83.4,84.5,83.4,42,43,43,5,32,
	88.2,3,84.5,83.4,45,43,9,43,32,
	7,81,84.5,83.4,4,8,43,43,32,
	88.2,83,84.5,83.4,45,7,43,43,32,
	88.2,3,84.5,83.4]
 
# 增加功能:
plt.hist(
	h1,#直方图数据
	10,#直方个数
	density=1,#默认0数据出现个数,1出现个数归一化为出现的频率
	histtype='bar',#直方图样式:默认bar,stepfilled填充颜色,step不填充只有线条
	facecolor='b',#直方图颜色
	edgecolor='g',#直方图边框颜色
	alpha=0.3,
)
plt.show()

七、箱线图 

a=[15,5,9,22,4,-5,45,-22]
plt.boxplot(a)
plt.show()

更加炫酷的箱线图

a = [42, 33, 33, 3, 2, 44]
b = [4, 3, 3, 23, 32, 44]
c = [52, 23, 93, 13, 22, 44]
 
plt.boxplot(
    (a, c, b),  # 数据
    labels=('a', 'c', 'b'),  # 标签
    showfliers=True,  # 是否显示异常值,默认显示
    whis=1.5,  # 指定异常值参数,默认1.5倍四分位差
    meanline=True,  # 是否用线表示平均数,默认用点
    widths=0.5,  # 柱子宽度
    vert=False,  # 默认TRUE纵向,FALSE横向
    patch_artist=True,  # 是否填充颜色
)
plt.grid(linewidth=0.2)
plt.show()

last but not list、如何给x、y轴坐标打上标签 

此处我们用柱状图来举例

#男生平均分,语文/数学/英语/物理/化学
boy=[85.5,91,72,59,66]
#女生平均分
girl=[94,82,89.5,62,49]
 
#科目坐标
course=[1,2,3,4,5]
 
#绘图,男生
plt.bar(
	course,#x轴,科目
	boy,#y轴,男生成绩
	color='g',#颜色
	width=0.3,
	alpha=0.3,
)
#绘图,女生
#科目坐标
course2=[1.3,2.3,3.3,4.3,5.3]
plt.bar(
	course2,#x轴,科目
	girl,#y轴,女生成绩
	color='r',#颜色
	width=0.3,
)
 
#将数据标注在柱子上
for i,j in zip(course,boy):
	plt.text(
		i,#x轴,course学科位置
		j,#y轴,boy分数
		s=j,
		ha='center',#水平对齐
		va='bottom',#垂直对齐
		alpha=0.5,
	)
 
for i,j in zip(course2,girl):
	plt.text(
		i,
		j,
		s=j,
		ha='center',
		va='bottom',
		alpha=0.5,
	)
#科目坐标数值替换字符
course3=[1.15,2.15,3.15,4.15,5.15]
plt.xticks(course3,['Chi','Math','Eng','Phy','Che'])
plt.show()

END、如何叠加绘制图像

这里我们用一张散点图和一张折线图举例子。在此处我们将散点图和折线图分别编制出来之后,在使用plt.show,就可以发现我们的两张图标叠加在一起啦

x = [1, 3, 5, 7, 9, 11, 13, 15, 17]
y = [2, -5, 19, 3, 5, 8, 12, 6, 1]
plt.scatter(
    x,  # x轴
    y,  # y轴
 
    color='r',  # 颜色
    marker='o',  # 样式
    linewidth=20,  # 线宽
    alpha=0.3,  # 透明度
    # 散点大小,用于绘制气泡图,在散点图的基础上又增加了一个维度
    s=[100, 300, 500, 700, 200, 400, 600, 800, 1000],  # 大小
)
date = [3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
eurcny=[9, 3, 5, 7, 0, 10, 6, 1, 1, 42, 12, 3, 42, 4, 37, 45, 18, 481]
plt.plot(
    date,  # x轴数据,日期
    eurcny,  # y轴数据,收盘价
    color='r',  # 线条颜色
    linestyle='--',  # 线条风格
    linewidth=1.0,# 线条粗细
    marker='o',  # 标记风格
    markerfacecolor='#ffff00',  # 标记颜色
    markersize=10,  # 标记大小
    alpha=0.5,  # 透明度
)
plt.show()

总结

到此这篇关于Python matplotlib如何简单绘制不同类型表格的文章就介绍到这了,更多相关matplotlib绘制表格内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python笔记_将循环内容在一行输出的方法

    python笔记_将循环内容在一行输出的方法

    今天小编就为大家分享一篇python笔记_将循环内容在一行输出的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Python利用heapq实现一个优先级队列的方法

    Python利用heapq实现一个优先级队列的方法

    今天小编就为大家分享一篇Python利用heapq实现一个优先级队列的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02
  • pip升级pip3的快速方法指南

    pip升级pip3的快速方法指南

    使用python时经常使用到pip命令,可以方便安装python的各种第三方库这篇文章主要给大家介绍了关于pip升级pip3的快速方法,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-12-12
  • python 音频处理重采样、音高提取的操作方法

    python 音频处理重采样、音高提取的操作方法

    这篇文章主要介绍了python 音频处理重采样、音高提取,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧
    2024-08-08
  • python3 使用openpyxl将mysql数据写入xlsx的操作

    python3 使用openpyxl将mysql数据写入xlsx的操作

    这篇文章主要介绍了python3 使用openpyxl将mysql数据写入xlsx的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • Python全景系列之控制流程盘点及进阶技巧

    Python全景系列之控制流程盘点及进阶技巧

    这篇文章主要为大家介绍了Python全景系列之控制流程盘点及进阶技巧详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-05-05
  • 利用PyInstaller将python程序.py转为.exe的方法详解

    利用PyInstaller将python程序.py转为.exe的方法详解

    这篇文章主要给大家介绍了利用PyInstaller将python程序.py转为.exe的方法,文中介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面来一起看看吧。
    2017-05-05
  • 分享15个最受欢迎的Python开源框架

    分享15个最受欢迎的Python开源框架

    以下是从GitHub中整理出的15个最受欢迎的Python开源框架。这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等
    2014-07-07
  • Python基础之hashlib模块详解

    Python基础之hashlib模块详解

    这篇文章主要介绍了Python基础之hashlib模块详解,文中有非常详细的代码示例,对正在学习python基础的小伙伴们有非常好的帮助,需要的朋友可以参考下
    2021-05-05
  • Python基础之函数原理与应用实例详解

    Python基础之函数原理与应用实例详解

    这篇文章主要介绍了Python基础之函数原理与应用,结合具体实例形式详细分析了Python函数的定义、原理、参数、返回值、嵌套等相关概念与使用技巧,需要的朋友可以参考下
    2020-01-01

最新评论