Python并行编程多线程锁机制Lock与RLock实现线程同步
什么是锁机制?
要回答这个问题,我们需要知道为什么需要使用锁机制。前面我们谈到一个进程内的多个线程的某些资源是共享的,这也是线程的一大优势,但是也随之带来一个问题,即当两个及两个以上的线程同时访问共享资源时,如果此时没有预设对应的同步机制,就可能带来同一时刻多个线程同时访问同一个共享资源,即出现竞态,多数情况下我们是不希望出现这样的情况的,那么怎么避免呢?
Lock() 管理线程
先看一段代码:
import threading import time resource = 0 count = 1000000 resource_lock = threading.Lock() def increment(): global resource for i in range(count): resource += 1 def decerment(): global resource for i in range(count): resource -= 1 increment_thread = threading.Thread(target=increment) decerment_thread = threading.Thread(target=decerment) increment_thread.start() decerment_thread.start() increment_thread.join() decerment_thread.join() print(resource)
运行截图如下:
运行结果
当我们多次运行时,可以看到最终的结果都几乎不等于我们期待的值即resource
初始值0
。
为什么呢? 原因就是因为 += 和 -=并不是原子操作。
可以使用dis模块查看字节码:
import dis def add(total): total += 1 def desc(total): total -= 1 total = 0 print(dis.dis(add)) print(dis.dis(desc)) # 运行结果: # 3 0 LOAD_FAST 0 (total) # 3 LOAD_CONST 1 (1) # 6 INPLACE_ADD # 7 STORE_FAST 0 (total) # 10 LOAD_CONST 0 (None) # 13 RETURN_VALUE # None # 5 0 LOAD_FAST 0 (total) # 3 LOAD_CONST 1 (1) # 6 INPLACE_SUBTRACT # 7 STORE_FAST 0 (total) # 10 LOAD_CONST 0 (None) # 13 RETURN_VALUE # None
那么如何保证初始值为0
呢? 我们可以利用Lock()
,代码如下:
import threading import time resource = 0 count = 1000000 resource_lock = threading.Lock() def increment(): global resource for i in range(count): resource_lock.acquire() resource += 1 resource_lock.release() def decerment(): global resource for i in range(count): resource_lock.acquire() resource -= 1 resource_lock.release() increment_thread = threading.Thread(target=increment) decerment_thread = threading.Thread(target=decerment) increment_thread.start() decerment_thread.start() increment_thread.join() decerment_thread.join() print(resource)
运行截图如下:
运行结果
从运行结果可以看到,不论我们运行多少次改代码,其resource
的值都为初始值0
, 这就是Lock()
的功劳,即它可以将某一时刻的访问限定在单个线程或者单个类型的线程上,在访问锁定的共享资源时,必须要现获取对应的锁才能访问,即要等待其他线程释放资源,即resource_lock.release()
当然为了防止我们对某个资源锁定后,忘记释放锁,导致死锁,我们可以利用上下文管理器管理锁实现同样的效果:
import threading import time resource = 0 count = 1000000 resource_lock = threading.Lock() def increment(): global resource for i in range(count): with resource_lock: resource += 1 def decerment(): global resource for i in range(count): with resource_lock: resource -= 1 increment_thread = threading.Thread(target=increment) decerment_thread = threading.Thread(target=decerment) increment_thread.start() decerment_thread.start()
RLock() 与Lock()的区别
我们需要知道Lock()
作为一个基本的锁对象,一次只能一个锁定,其余锁请求,需等待锁释放后才能获取,否则会发生死锁:
import threading resource.lock = threading.lock() resource = 0 resource.lock.acquire() resource.lock.acquire() resource += 1 resource.lock.release() resource.lock.release()
为解决同一线程中不能多次请求同一资源的问题,python提供了“可重入锁”:threading.RLock
,RLock
内部维护着一个Lock
和一个counter
变量,counter
记录了acquire
的次数,从而使得资源可以被多次acquire
。
直到一个线程所有的acquire
都被release
,其他的线程才能获得资源 。用法和threading.Lock
类相同,即比如递归锁的使用:
import threading lock = threading.RLock() def dosomething(lock): lock.acquire() # do something lock.release() lock.acquire() dosomething(lock) lock.release()
以上就是Python并行编程多线程锁机制Lock与RLock实现线程同步的详细内容,更多关于Python锁Lock RLock线程同步的资料请关注脚本之家其它相关文章!
相关文章
使用Python的Supervisor进行进程监控以及自动启动
这篇文章主要介绍了使用Python的Supervisor进行进程监控以及自动启动,使用python supervisor实现,需要的朋友可以参考下2014-05-05PyTorch中 tensor.detach() 和 tensor.data 的
这篇文章主要介绍了PyTorch中 tensor.detach() 和 tensor.data 的区别解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下2023-04-04Python常见库matplotlib学习笔记之画图文字的中文显示
在Python中使用matplotlib或者plotnine模块绘图时,常常出现图表中无法正常显示中文的问题,下面这篇文章主要给大家介绍了关于Python常见库matplotlib学习笔记之画图文字的中文显示的相关资料,需要的朋友可以参考下2023-05-05
最新评论