Pytest测试报告工具Allure用法介绍

 更新时间:2022年07月02日 09:15:15   作者:小旭2021  
这篇文章介绍了Pytest测试报告工具Allure的用法,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

简介

Allure Framework是一种灵活的、轻量级、多语言测试报告工具。

不仅可以以简洁的网络报告形式非常简洁地显示已测试的内容,

而且还允许参与开发过程的每个人从日常执行中提取最大程度的有用信息和测试。

从开发/测试的角度来看:

Allure报告可以快速查看到缺陷点,可以将测试未通过划分为Bug和中断的测试。

还可以配置日志,步骤,固件,附件,时间,历史记录,以及与TMS的集成和Bug跟踪系统,以便掌握所有信息。

从管理者的角度来看:

Allure提供了一个清晰的全局,涵盖了所涵盖的功能,缺陷聚集的位置,执行时间表,以及许多其他方便的事情。

独特的模块化和可扩展性,确保你能够进行适当的微调,以使更适合你自己。

官方文档:https://docs.qameta.io/allure/

部署使用

Pytest作为一个高扩展性、功能强大的自动化测试框架,自身的测试结果是较为简单的,如果想要一份完整测试报告需要其他插件的支持。

如果你对测试报告要求没那么高,你可以使用pytest-html插件,基本覆盖了测试报告的常规内容。

但是如果你想查看清晰的测试过程、多维度的测试报告、自定义一些输出,以及与用例和缺陷系统集成等,那allure-python将是你的"不二人选"。

注意:allure-pytest从1.7之后已弃用,从2.0版本开始迁移至allure-python项目(即使用allure2),另外要运行allure命令行也需要Java的支持。

1、安装:

1)allure-pytest插件:

pip install -U allure-pytest

这将安装allure-pytest和allure-python-commons程序包,以生成与allure2兼容的报告数据。

2)allure工具:

官方下载地址:https://github.com/allure-framework/allure2/releases

我的下载链接:http://xiazai.jb51.net/202207/yuanma/allure-commandline-2.13.5_jb51.rar

解压软件包(建议直接放到Python文件夹下),然后添加bin目录到环境变量中,最后使用allure --version验证是否安装成功。

2、基本使用

>>> 要使allure侦听器能够在测试执行过程中收集结果,只需添加 --alluredir  选项并提供路径即可存储结果。

pytest --alluredir=<directory-with-results>

如果你运行后进行了用例更改,那么下次运行可能还是会查看到之前记录,可添加 --clean-alluredir 选项清除之前记录。

pytest --alluredir=<directory-with-results> --clean-alluredir

>>> 要在测试完成后查看实际报告,你需要使用allure命令行应用程序从结果生成报告。

1)在默认浏览器中显示生成的报告

allure serve <my-allure-results>

2)要从现有的Allure结果生成报告,可以使用以下命令:

allure generate <directory-with-results>

默认报告将生成到allure-report文件夹,你可以使用 -o 标志更改目标文件夹:

allure generate <directory-with-results> -o <directory-with-report>

3)生成报告后,可以在默认系统浏览器中将其打开,只需运行:

allure open <directory-with-report>

你也可以找到该目录,使用浏览器打开该目录下index.html。注意:有时打开会找不到数据或者乱码,如果你使用的是pycharm,请在pycharm中右击打开。

4)如果要删除生成的报告数据,只需运行:

allure report clean

默认情况下,报告命令将在allure-results文件夹中查找报告,如果要从其他位置使用报告,则可以使用-o选项。

5)你也可以使用allure help命令查看更多帮助。

测试报告

你可以在allure报告中看到所有默认的pytest状态:只有由于一个断言错误而未成功进行的测试将被标记为失败,其他任何异常都将导致测试的状态为坏。

示例:

# test_sample.py
import pytest

# 被测功能
def add(x, y):
    return x + y

# 测试类
class TestAdd:

    # 跳过用例
    def test_first(self):
        pytest.skip('跳过')
        assert add(3, 4) == 7

    # 异常用例
    def test_second(self):
        assert add(-3, 4) == 1
        raise Exception('异常')

    # 成功用例
    def test_three(self):
        assert add(3, -4) == -1

    # 失败用例
    def test_four(self):
        assert add(-3, -4) == 7
# conftest.py
import pytest

@pytest.fixture(scope='session', autouse=True)
def db():
    print('start')
    yield
    print('closed')

运行:

E:\workspace-py\Pytest>pytest test_sample.py --alluredir=report --clean-alluredir
========================================================================== test session starts ==========================================================================
platform win32 -- Python 3.7.3, pytest-6.0.2, py-1.9.0, pluggy-0.13.0
rootdir: E:\workspace-py\Pytest
plugins: allure-pytest-2.8.18, assume-2.3.3, cov-2.10.1, html-3.0.0, rerunfailures-9.1.1, xdist-2.1.0
collected 4 items                                                                                                                                                        

test_sample.py sF.F                                                                                                                                                [100%]

=============================================================================== FAILURES ================================================================================
__________________________________________________________________________ TestAdd.test_second __________________________________________________________________________

self = <test_sample.TestAdd object at 0x000000000464F278>

    def test_second(self):
        assert add(-3, 4) == 1
>       raise Exception('异常')
E       Exception: 异常

test_sample.py:21: Exception
___________________________________________________________________________ TestAdd.test_four ___________________________________________________________________________

self = <test_sample.TestAdd object at 0x000000000464FD30>

    def test_four(self):
>       assert add(-3, -4) == 7
E       assert -7 == 7
E        +  where -7 = add(-3, -4)

test_sample.py:29: AssertionError
======================================================================== short test summary info ========================================================================
FAILED test_sample.py::TestAdd::test_second - Exception: 异常
FAILED test_sample.py::TestAdd::test_four - assert -7 == 7
================================================================ 2 failed, 1 passed, 1 skipped in 0.14s =================================================================

生成报告:

E:\workspace-py\Pytest>allure generate --clean report
Report successfully generated to allure-report

查看目录:

E:\workspace-py\Pytest>tree
文件夹 PATH 列表
卷序列号为 B2C1-63D6
E:.
├─.idea
├─.pytest_cache
│  └─v
│      └─cache
├─allure-report
│  ├─data
│  │  ├─attachments
│  │  └─test-cases
│  ├─export
│  ├─history
│  ├─plugins
│  │  ├─behaviors
│  │  ├─jira
│  │  ├─junit
│  │  ├─packages
│  │  ├─screen-diff
│  │  ├─trx
│  │  ├─xctest
│  │  ├─xray
│  │  └─xunit-xml
│  └─widgets
├─report
└─__pycache__

查看报告:

Overview:总览,显示用例执行情况、严重程度分布、环境信息等。
Categories:分类,按用例执行结果分类,异常错误和失败错误。
Suites:套件,按测试用例套件分类,目录 ->测试文件 -> 测试类 ->测试方法。
Graphs:图表,显示用例执行分布情况,状态、严重程度、持续时间、持续时间趋势、重试趋势、类别趋势、整体趋势。
Timeline:时间线,显示用例耗时情况,具体到各个时间点用例执行情况
Behaviors:行为,按用例行为举止分类(以标记文字形式显示,需要用例添加allure相关装饰器)
Package:配套,按目录形式分类,显示不同的目录用例执行情况。

用例详情:

 

Allure报告不仅能显示pytest不同执行结果状态,错误情况,固件等,还能捕获参数化测试所有参数名称和值。

用例:

# test_sample.py
import pytest
import allure

# 被测功能
def add(x, y):
    return x + y

# 测试类
@allure.feature("测试练习")
class TestLearning:
    data = [
        [3, 4, 7],
        [-3, 4, 1],
        [3, -4, -1],
        [-3, -4, 7],
    ]
    @allure.story("测试用例")
    @allure.severity(allure.severity_level.NORMAL)
    @pytest.mark.parametrize("data", data)
    def test_add(self, data):
        assert add(data[0], data[1]) == data[2]

报告:

到此这篇关于Pytest测试报告工具Allure的文章就介绍到这了。希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python实现二叉树结构与进行二叉树遍历的方法详解

    Python实现二叉树结构与进行二叉树遍历的方法详解

    二叉树是最基本的数据结构,这里我们在Python中使用类的形式来实现二叉树并且用内置的方法来遍历二叉树,下面就让我们一起来看一下Python实现二叉树结构与进行二叉树遍历的方法详解
    2016-05-05
  • Numpy一维线性插值函数的用法

    Numpy一维线性插值函数的用法

    这篇文章主要介绍了Numpy一维线性插值函数的用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • Python类super()及私有属性原理解析

    Python类super()及私有属性原理解析

    这篇文章主要介绍了Python类super()及私有属性原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • Python matplotlib可视化之绘制韦恩图

    Python matplotlib可视化之绘制韦恩图

    韦恩图可以清晰的反映不同组数据共有和各自独有的部分,本文将详细为大家介绍如下两种python绘制venn图策略:matplotlib_venn和pyvenn,需要的可以参考一下
    2022-02-02
  • Python虚拟机中描述器的王炸应用分享

    Python虚拟机中描述器的王炸应用分享

    本篇文章给大家介绍一下描述器在 python 语言当中有哪些应用,主要介绍如何使用 python 语言实现 python 内置的 proterty 、staticmethod 和 class method,需要的可以参考一下
    2023-05-05
  • NumPy数组创建方法与索引访问详解

    NumPy数组创建方法与索引访问详解

    这篇文章主要介绍了NumPy数组创建方法与索引访问,NumPy 中的核心数据结构是 ndarray,它代表多维数组,NumPy 提供了多种方法来创建 ndarray 对象,文中通过代码示例讲解的非常详细,需要的朋友可以参考下
    2024-05-05
  • Python后台管理员管理前台会员信息的讲解

    Python后台管理员管理前台会员信息的讲解

    今天小编就为大家分享一篇关于Python后台管理员管理前台会员信息的讲解,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-01-01
  • python机器学习之神经网络(一)

    python机器学习之神经网络(一)

    这篇文章主要为大家详细介绍了python机器学习之神经网络第一篇,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-12-12
  • python 实现端口扫描工具

    python 实现端口扫描工具

    这篇文章主要介绍了python 实现端口扫描工具的示例代码,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-12-12
  • Python中逗号转为空格的三种方法

    Python中逗号转为空格的三种方法

    本文介绍了Python中将逗号转换为空格的三种方法,包含使用replace函数、使用split函数、使用正则表达式,具有一定的参考价值,感兴趣的可以了解一下
    2024-02-02

最新评论