C语言超详细讲解线性表

 更新时间:2022年07月02日 11:12:34   作者:刚入门的小仙女  
线性表,数据结构中最简单的一种存储结构,专门用于存储逻辑关系为"一对一"的数据。线性表是基于数据在实际物理空间中的存储状态,又可细分为顺序表(顺序存储结构)和链表

1. 顺序表

顺序表是指用一段连续的地址,依次存放数据元素的线性数据结构。此种存储方式使得顺序表的物理结构与逻辑结构都是连续的。

与数组的区别:函数中的数组被存放在栈段中,而栈段有系统限制的大小(可使用ulimit -s查看系统限制的大小,单位为KB),因此顺序表往往使用在堆段中操作管理动态数组的方式实现。

1.1 管理结点

在顺序表中,管理节点内部一般存放:数据域地址(*data)、**总容量(size)以及当前数据量(len)**等等。

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
typedef struct Vector {
	//数据域 
	int *data;
	//总容量 
	int size;
	//当前元素个数 或 指向末尾元素的后一位
	int len;
} Vector; 
//初始化
Vector *initVector(int size){
	Vector *v = (Vector *) malloc(sizeof(Vertor));
	v->data = (int *) malloc(sizeof(int) * size);
	v->len = 0;
	v->size = size;
	return v; 
} 
//释放
void freeVector(Vector *v){
	if(!v) return;
	free(v->data);
	free(v);
}
int main(){
	//初始化size为10的线性表
	Vector *v = initVector(10)
	return 0;
}

1.2 顺序表的插入

//插入 
//将 v->data[idx] 处变成 val 
void insert(Vector *v, int idx, int val){
	//判断 v 是否为空 返回 
	if(!v) return; 
	//判断 idx 是否合法 
	if(idx > v->len || idx < 0) return ;
	//判断 v 的容量是否已满
	if(v->len == v->size) return ; 
	//维护顺序表的特性  将 idx 及之后的元素后移 
	for(int i = v->len; i > idx ;i++){
		v->data[i] = v->data[i - 1];
	}
	//在 idx 处插入数据 
	v->data[i] = val;
	//更新当前元素个数 
	v->len++; 
} 

1.3 顺序表的删除

//删除
//将 v->data[idx] 删除 
void delete(Vector *v, int idx){
	if(!v) return ;
	if(idx >= v->len || idx < 0) return ;
	// idx 之后的元素前移
	for(int i = idx; i < v->len-1; i++){
		v->data[i] = v->data[i + 1];
	}
	v->len--;
}

1.4 顺序表的扩容

扩容:新创建 原size * 2 的空间,然后将原数据从原空间迁移到新空间

//倍增法扩容 size -> size + exsize
int expand(Vector *v){
	//扩容为 size + exSize 
	int exSize = v->size;
	int *tmp;
	while(exSize){
		//尝试向内存申请空间 
		tmp = (int *) realloc(v->data, sizeof(int) * (v->size + exSize));
		//申请成功 
		if(tmp) break;
		//申请不成功 exSize/2 继续申请 
		exSize >>= 1; 
	}
	//彻底失败 未申请到空间 
	if(!tmp) return 0;
	//扩容成功
	v->data = tmp; 
	v->size += exSize;
	return 1;
}
//插入 
//将 v->data[idx] 处变成 val 
void insert(Vector *v, int idx, int val){
	...
	if(v->len == v->size) {
		//尝试扩容 扩容成功为 1 失败为 0 
		if(!expand(v)) return; 
	} 
	...
} 

2. 链表

2.1 定义

链表是一种物理结构不连续,但可以依靠结点中的指针实现逻辑结构连续的线性数据结构。

构成链表的数据元素被称为“结点”,节点内部存放数据与指向下一个结点的指针。

//定义结点 
typedef struct Node{
	int val;
	struct Node *next;
} Node; 
//结点初始化 
Node *initNode(int val){
	Node *node = (Node *) malloc(sizeof(Node));
	node->val = val;
	node->next = NULL;
	return node;
} 
//释放结点
void freeNode(Node *node){
	if(!node) return ;
	free(node);
} 

只有单一结点指针的链表的全程是“单链表”,经常被简称为链表。

链表的管理结点一般仅需要存放头结点指针(*head)。

如果需要频繁获取链表长度,管理结点中可以额外存放链表长度(len)。

//定义链表 管理结点 
typedef struct List{
	Node *head;
	int len;
} List;
//初始化链表
List *initList() {
	List *list = (List *) malloc(sizeof(List));
	list->head = NULL;
	list->len = 0;
	return list;
}

2.2 头部插入

头插法:将新插入的节点放在 head 后,时间复杂度O(1)

//头部插入
void insertToHead(List *list, int val){
	if(!list) return ;
	Node *node = initNode(val);
	node->next = list->head;
	list->head = node;
	list->len++;
} 

2.3 尾部插入

尾插法:找到最后一个结点,将新节点插入。如果没有设计尾指针,则时间复杂度为O(n)。

//尾部插入 
void insertToTail(List *list, int val){
	if(!list) return ;
	Node *node = initNode(val);
	//如果list为空 则node为第一个结点 让head等于node
	//判断条件可更改为list->len == 0 
	if(list->head == NULL){
		list->head = node;
		list->len++;
		return ;
	}
	Node *p = list->head;
	while(p->next != NUll){
		p = p->next;
	}
	p->next = node;
	list->len++;
}
//测试
int main(){
	List *list1 = initList();
	List *list2 = initList();
	for(int i = 0;i <= 10;i += 2){
		insertToHead(list1,i);
	}
	Node *p = list1->head;
	while(p){
		printf("%d -> ",p->val);
		p = p->next;
	}
	printf("\n");
	for(int i = 1;i <= 10;i += 2){
		insertToTail(list2,i);
	}
	Node *q = list2->head;
	while(q){
		printf("%d -> ",q->val);
		q = q->next;
	}
	printf("\n");
	return 0;
}

输出结果:

2.4 任意位置插入

//任意位置的插入
// idx = 0 待插入结点为头结点
// idx > 0 插入至第 i 个结点后
void insert(List *list, int idx, int val){
	if(!list) return ;
	if(idx > list->len || idx < 0) return ;
	if(idx == 0){
		//头插法 
		insertToHead(list,val);
		return;
	}
	Node *node = initNode(val);
	//结点索引为 0 
	Node *p = list->head;
	//p 找到第 idx - 1个结点
	// i = 1  结点索引为 1 
	// i = 2 结点索引为 2
	// i = idx - 1 结点索引为 idx - 1 
	for(int i = 1;i <= idx - 1;i++){
		p = p->next;
	} 
	//插入
	node->next = p->next;
	p->next = node;
	list->len++;
}

2.5 任意位置删除

//任意位置的删除 
void remove(List *list, int idx){
	if(!list) return ;
	if(idx > list->len || idx < 0) return ;
	//p为0号索引结点
	Node *p = list->head;
	//删除索引为 0 的结点 更改head 
	if(idx == 0){
		list->head = p->next; 
		list->len--;
		freeNode(p);
		return;
	}
	//找到idx-1个结点
	for(int i = 1;i <= idx - 1;i ++){
		p = p->next;
	}
	Node *node = p->next;
	//删除 
	p->next = p->next->next;
	list->len--;
	freeNode(node);
} 

2.6 虚头结点

在需要特殊处理头结点的时候,可以实现一个带有虚头结点的链表。在链表初始化或在某些操作执行时,将一个额外的结点放在头指针执行的地方。虚头结点可以使得整个链表永远不空,永远有头。所以拥有虚头结点的链表在处理各类结点操作时会更加便捷。

任意位置插入:不需要特殊考虑插入位置是否在链表头部。

任意位置删除:不需要特殊考虑删除的结点是否是链表的第一个结点。

//结点部分没有改动
//定义结点 
typedef struct Node{
	int val;
	struct Node *next;
} Node; 
//结点初始化 
Node *initNode(int val){
	Node *node = (Node *) malloc(sizeof(Node));
	node->val = val;
	node->next = NULL;
	return node;
} 
//释放结点
void freeNode(Node *node){
	if(!node) return ;
	free(node);
}

//定义链表 管理结点 
typedef struct List{
	Node *head;
	int len;
} List;
//初始化链表
List *initList() {
	List *list = (List *) malloc(sizeof(List));
	//变动  :初始化的时候赋予一个结点 任意数值都可以 
	list->head = initNode(-1);
	list->len = 0;
	return list;
}
//头部插入
void insertToHead(List *list, int val){
	if(!list) return ;
	Node *node = initNode(val);
	// 变动
	node->next = list->head->next;
	// 变动
	list->head->next = node;
	list->len++;
} 
//尾部插入 
void insertToTail(List *list, int val){
	if(!list) return ;
	Node *node = initNode(val);
	//变动 删除对链表是否为空的判断  可以直接进行插入
	//此处可以谢伟 Node *p = list->head->next; 
	Node *p = list->head;
	while(p->next != NULL){
		p = p->next;
	}
	p->next = node;
	list->len++;
}
//任意位置的插入
void insert(List *list, int idx, int val){
	if(!list) return ;
	if(idx > list->len || idx < 0) return ;
	//变动 : 删除对链表是否为空的判断 
	Node *node = initNode(val);
	Node *p = list->head;
	for(int i = 1;i <= idx;i++){
		p = p->next;
	} 
	//插入
	node->next = p->next;
	p->next = node;
	list->len++;
} 
//任意位置的删除 
void remove(List *list, int idx){
	if(!list) return ;
	if(idx > list->len || idx < 0) return ;
	Node *p = list->head;
	for(int i = 1;i <= idx;i ++){
		p = p->next;
	}
	Node *node = p->next;
	//删除 
	p->next = p->next->next;
	list->len--;
	freeNode(node);
}

到此这篇关于C语言超详细讲解线性表的文章就介绍到这了,更多相关C语言线性表内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C/C++ memset方法的误区

    C/C++ memset方法的误区

    memset 作为对内存初始化的函数,还是有不少坑和误区的,今天就来对这个函数作一个总结。避免后期使用不当踩入坑,需要的朋友可以参考下
    2021-04-04
  • Qt中Tab与Tree组件实现分页菜单

    Qt中Tab与Tree组件实现分页菜单

    本文主要介绍tabWidget选择夹组件与TreeWidget树形选择组件的常用方法及灵活运用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-12-12
  • C++ const的各种用法详解

    C++ const的各种用法详解

    const名叫常量限定符,用来限定特定变量,以通知编译器该变量是不可修改的。习惯性的使用const,可以避免在函数中对某些不应修改的变量造成可能的改动。本文主要谈谈const的用法,感兴趣的同学可以参考阅读
    2023-04-04
  • 浅谈C++性能榨汁机之伪共享

    浅谈C++性能榨汁机之伪共享

    使给定内存位置被一个线程所访问,可能还是会有乒乓缓存的存在,是因为另一种叫做伪共享(false sharing)的效应。即使数据存储在缓存行中,多个线程对数据中的成员进行访问时,硬件缓存还是会产生乒乓缓存。本文将介绍C++中的伪共享
    2021-06-06
  • C++中地图按键排序实现示例

    C++中地图按键排序实现示例

    这篇文章主要为大家介绍了C++中地图按键排序实现示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-07-07
  • C++实现TCP客户端及服务器Recv数据筛选处理详解

    C++实现TCP客户端及服务器Recv数据筛选处理详解

    这篇文章主要为大家介绍了C++实现TCP客户端及服务器Recv数据筛选处理详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-10-10
  • C++代码实现链队列详解

    C++代码实现链队列详解

    下面小编就为大家分享一篇C++代码实现链队列的示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧,希望能够给你带来帮助
    2021-09-09
  • 结合C++11的新特性来解析C++中的枚举与联合

    结合C++11的新特性来解析C++中的枚举与联合

    这篇文章主要介绍了C++编程中的枚举与联合,结合了范围(或强类型)enum class类型等C++11的新特性来讲解,需要的朋友可以参考下
    2016-01-01
  • 快速模式匹配算法(KMP)的深入理解

    快速模式匹配算法(KMP)的深入理解

    本篇文章是对快速模式匹配算法(KMP)进行了详细的分析介绍,需要的朋友参考下
    2013-05-05
  • C语言中常见的几种流程控制语句

    C语言中常见的几种流程控制语句

    这篇文章主要给大家介绍了关于C语言中常见的几种流程控制语句,分别包括goto语句、if语句、switch语句、while循环、do...while循环、for循环以及break和continue等,需要的朋友可以参考下
    2021-08-08

最新评论