NumPy 与 Python 内置列表计算标准差区别详析
1 什么是 Numpy
NumPy,是 Numerical Python 的简称,用于高性能科学计算和数据分析的基础包,像数学科学工具(pandas)和框架(Scikit-learn)中都使用到了 NumPy 这个包。
NumPy 中的基本数据结构是ndarray
或者 N 维数值数组,在形式上来说,它的结构有点像 Python 的基础类型——Python列表。
但本质上,这两者并不同,可以看到一个简单的对比。
我们创建两个列表,当我们创建好了之后,可以使用 +
运算符进行连接:
list1 = [i for i in range(1,11)] list2 = [i**2 for i in range(1,11)] print(list1+list2) # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
列表中元素的处理感觉像对象,不是很数字,不是吗? 如果这些是数字向量而不是简单的数字列表,您会期望 + 运算符的行为略有不同,并将第一个列表中的数字按元素添加到第二个列表中的相应数字中。
接下来看一下 Nympy 的数组版本:
import numpy as np arr1 = np.array(list1) arr2 = np.array(list2) arr1 + arr2 # array([ 2, 6, 12, 20, 30, 42, 56, 72, 90, 110])
通过 numpy 的np.array
数组方法实现了两个列表内的逐个值进行相加。
我们通过dir
函数来看两者的区别,先看 Python 内置列表 list1
的内置方法:
再用同样的方法看一下 arr1中的方法:
NumPy 数组对象还有更多可用的函数和属性。 特别要注意诸如mean
、std
和sum
之类的方法,因为它们清楚地表明重点关注使用这种数组对象的数值/统计计算。 而且这些操作也很快。
2 NumPy 数组和 Python 内置计算对比
NumPy 的速度要快得多,因为它的矢量化实现以及它的许多核心例程最初是用 C 语言(基于 CPython 框架)编写的。 NumPy 数组是同构类型的密集排列的数组。 相比之下,Python 列表是指向对象的指针数组,即使它们都属于同一类型。 因此,我们得到了参考局部性的好处。
许多 NumPy 操作是用 C 语言实现的,避免了 Python 中的循环、指针间接和逐元素动态类型检查的一般成本。 特别是,速度的提升取决于您正在执行的操作。 对于数据科学和 ML 任务,这是一个无价的优势,因为它避免了长和多维数组中的循环。
让我们使用 @timing
计时装饰器来说明这一点。 这是一个围绕两个函数 std_dev
和std_dev_python
包装装饰器的代码,分别使用 NumPy 和本机 Python 代码实现列表/数组的标准差计算。
3 函数计算时间装饰器
我们可以使用 Python 装饰器和functools
模块的wrapping
来写一个 时间装饰器timing
:
def timing(func): @wraps(func) def wrap(*args, **kw): begin_time = time() result = func(*args, **kw) end_time = time() print(f"Function '{func.__name__}' took {end_time-begin_time} seconds to run") return result return wrap
4 标准差计算公式
然后利用这个时间装饰器来看 Numpy 数组和 Python 内置的列表,然后计算他们的标准差,
公式如图:
- 定义 Numpy 计算标准差的函数
std_dev()
,numpy
模块中内置了标准差公式的函数a.std()
,我们可以直接调用 - 列表计算公式方法需要按照公式一步一步计算:
- 先求求出宗和
s
- 然后求出平均值
average
- 计算每个数值与平均值的差的平方,再求和
sumsq
- 再求出
sumsq
的平均值sumsq_average
- 得到最终的标准差结果
result
代码如下:
from functools import wraps from time import time import numpy as np from math import sqrt def timing(func): @wraps(func) def wrap(*args, **kw): begin_time = time() result = func(*args, **kw) end_time = time() # print(f"Function '{func.__name__}' with arguments {args},keywords {kw} took {end_time-begin_time} seconds to run") print(f"Function '{func.__name__}' took {end_time-begin_time} seconds to run") return result return wrap @timing def std_dev(a): if isinstance(a, list): a = np.array(a) s = a.std() return s @timing def std_dev_python(lst): length = len(lst) s = sum(lst) average = s / length sumsq = 0 for i in lst: sumsq += (i-average)**2 sumsq_average = sumsq/length result = sqrt(sumsq_average) return result
运行结果,最终可以看到 1000000 个值得标准差的值为 288675.13459,而 Numpy 计算时间为 0.0080 s,而 Python 原生计算方式为 0.2499 s:
由此可见,Numpy 的方式明显更快。
5 总结
NumPy 是专门针对数组的操作和运算进行了设计,所以数组的存储效率和输入输出性能远优于Python中的嵌套列表,数组越大,NumPy的优势就越明显。
到此这篇关于NumPy 与 Python 内置列表计算标准差区别详析的文章就介绍到这了,更多相关Python 内置列表内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python利用Django如何写restful api接口详解
这篇文章主要给大家介绍了关于Python利用Django如何写restful api接口的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2018-06-06理解Python数据离散化手写if-elif语句与pandas中cut()方法实现
这篇文章主要介绍了通过手写if-elif语句与pandas中cut()方法实现示例理解Python数据离散化详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪2023-05-05
最新评论