python使用seaborn绘图直方图displot,密度图,散点图
更新时间:2022年07月14日 08:43:28 作者:xiaozheng123121
这篇文章主要介绍了python使用seaborn绘图直方图displot,密度图,散点图,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
一、直方图distplot()
import numpy as np import seaborn as sns import matplotlib.pyplot as plt import matplotlib import pandas as pd fig = plt.figure(figsize=(12, 5)) ax1 = plt.subplot(121) rs = np.random.RandomState(10) # 设定随机数种子 s = pd.Series(rs.randn(100) * 100) sns.distplot(s, bins=10, hist=True, kde=True, rug=True, norm_hist=False, color='y', label='distplot', axlabel='x') plt.legend() ax1 = plt.subplot(122) sns.distplot(s, rug=True, hist_kws={"histtype": "step", "linewidth": 1, "alpha": 1, "color": "g"}, # 设置箱子的风格、线宽、透明度、颜色,风格包括:'bar', 'barstacked', 'step', 'stepfilled' kde_kws={"color": "r", "linewidth": 1, "label": "KDE", 'linestyle': '--'}, # 设置密度曲线颜色,线宽,标注、线形 rug_kws={'color': 'r'}) # 设置数据频率分布颜色 plt.show()
函数及参数介绍:
distplot(a, bins=None, hist=True, kde=True, rug=False, fit=None,hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, color=None, vertical=False, norm_hist=False, axlabel=None, label=None, ax=None)
- a 数据源
- bins 箱数hist、kde、rug 是否显示箱数、密度曲线、数据分布,默认显示箱数和密度曲线不显示数据分析
- {hist,kde,rug}_kws 通过字典形式设置箱数、密度曲线、数据分布的各个特征
- norm_hist 直方图的高度是否显示密度,默认显示计数,如果kde设置为True高度也会显示为密度
- color 颜色
- vertical 是否在y轴上显示图标,默认为False即在x轴显示,即竖直显示
- axlabel 坐标轴标签
- label 直方图标签
二、密度图
2.1 单个样本数据分布密度图
到此这篇关于python使用seaborn绘图直方图displot,密度图,散点图的文章就介绍到这了,更多相关python seaborn绘图 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python 页面解析Beautiful Soup库的使用方法
Beautiful Soup 简称 BS4(其中 4 表示版本号)是一个 Python 中常用的页面解析库,它可以从 HTML 或 XML 文档中快速地提取指定的数据,这篇文章主要介绍了springboot 集成 docsify 实现随身文档 ,需要的朋友可以参考下2022-09-09
最新评论