Python利用Seaborn绘制多标签的混淆矩阵
Seaborn - 绘制多标签的混淆矩阵、召回、精准、F1
导入seaborn\matplotlib\scipy\sklearn等包:
import seaborn as sns from matplotlib import pyplot as plt from scipy.special import softmax from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, f1_score sns.set_theme(color_codes=True)
从dataframe中,获取y_true(真实标签)和y_pred(预测标签):
y_true = df["target"] y_pred = df['prediction']
计算验证数据整体的准确率acc、精准率precision、召回率recall、F1,使用加权模式average=‘weighted’:
# 准确率acc,精准precision,召回recall,F1 acc = accuracy_score(df["target"], df['prediction']) precision = precision_score(y_true, y_pred, average='weighted') recall = recall_score(y_true, y_pred, average='weighted') f1 = f1_score(y_true, y_pred, average='weighted') print(f'[Info] acc: {acc}, precision: {precision}, recall: {recall}, f1: {f1}')
计算混淆矩阵:
# 横坐标是真实类别数,纵坐标是预测类别数 cf_matrix = confusion_matrix(y_true, y_pred)
5类矩阵的绘制方案,混淆矩阵、百分比的混淆矩阵、召回矩阵、精准矩阵、F1矩阵:
- 混淆矩阵是计数,百分比的混淆矩阵是占比
- 召回矩阵是,每行的和是1,每行代表真实类别数,占比就是召回
- 精准矩阵是,每列的和是1,每列代表预测列表数,占比就是精准
- F1矩阵是按照 2PR/(P+R),注意为0的情况,需要补0,使用np.divide(a, b, out=np.zeros_like(a), where=(b != 0))
代码如下:
# 横坐标是真实类别数,纵坐标是预测类别数 cf_matrix = confusion_matrix(y_true, y_pred) figure, axes = plt.subplots(2, 2, figsize=(16*1.25, 16)) # 混淆矩阵 ax = sns.heatmap(cf_matrix, annot=True, fmt='g', ax=axes[0][0], cmap='Blues') ax.title.set_text("Confusion Matrix") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") # plt.savefig(csv_path.replace(".csv", "_cf_matrix.png")) # plt.show() # 混淆矩阵 - 百分比 cf_matrix = confusion_matrix(y_true, y_pred) ax = sns.heatmap(cf_matrix / np.sum(cf_matrix), annot=True, ax=axes[0][1], fmt='.2%', cmap='Blues') ax.title.set_text("Confusion Matrix (percent)") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") # plt.savefig(csv_path.replace(".csv", "_cf_matrix_p.png")) # plt.show() # 召回矩阵,行和为1 sum_true = np.expand_dims(np.sum(cf_matrix, axis=1), axis=1) precision_matrix = cf_matrix / sum_true ax = sns.heatmap(precision_matrix, annot=True, fmt='.2%', ax=axes[1][0], cmap='Blues') ax.title.set_text("Precision Matrix") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") # plt.savefig(csv_path.replace(".csv", "_recall.png")) # plt.show() # 精准矩阵,列和为1 sum_pred = np.expand_dims(np.sum(cf_matrix, axis=0), axis=0) recall_matrix = cf_matrix / sum_pred ax = sns.heatmap(recall_matrix, annot=True, fmt='.2%', ax=axes[1][1], cmap='Blues') ax.title.set_text("Recall Matrix") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") # plt.savefig(csv_path.replace(".csv", "_precision.png")) # plt.show() # 绘制4张图 plt.autoscale(enable=False) plt.savefig(csv_path.replace(".csv", "_all.png"), bbox_inches='tight', pad_inches=0.2) plt.show() # F1矩阵 a = 2 * precision_matrix * recall_matrix b = precision_matrix + recall_matrix f1_matrix = np.divide(a, b, out=np.zeros_like(a), where=(b != 0)) ax = sns.heatmap(f1_matrix, annot=True, fmt='.2%', cmap='Blues') ax.title.set_text("F1 Matrix") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") plt.savefig(csv_path.replace(".csv", "_f1.png")) plt.show()
输出混淆矩阵、混淆矩阵(百分比)、召回矩阵、精准矩阵:
F1 Score:
到此这篇关于Python利用Seaborn绘制多标签的混淆矩阵的文章就介绍到这了,更多相关Python Seaborn混淆矩阵内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python基于Logistic回归建模计算某银行在降低贷款拖欠率的数据示例
这篇文章主要介绍了Python基于Logistic回归建模计算某银行在降低贷款拖欠率的数据,结合实例形式分析了Python基于逻辑回归模型的数值运算相关操作技巧,需要的朋友可以参考下2019-01-01浅谈Django QuerySet对象(模型.objects)的常用方法
这篇文章主要介绍了浅谈Django QuerySet对象(模型.objects)的常用方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-03-03
最新评论