Pandas数据连接pd.concat的实现

 更新时间:2022年07月22日 15:55:31   作者:山茶花开时。  
本文主要介绍了Pandas数据连接pd.concat的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

Pandas数据可以实现纵向和横向连接,将数据连接后会形成一个新对象(Series或DataFrame)

连接是最常用的多个数据合并操作

pd.concat()是专门用于数据连接合并的函数,它可以沿着行或列进行操作,同时可以指定非合并轴的合并方式(如合集、交集等)

pd.concat()会返回一个合并后的DataFrame

语法

pd.concat(objs, axis=0, join='outer', ignore_index=False, 
          keys=None, levels=None, names=None, sort=False,
          verify_integrity=False, copy=True)

参数 

  • objs: 需要连接的数据,可以是多个DataFrame或者Series,它是必传参数
  • axis: 连接轴的方法,默认值为0,即按行连接,追加在行后面;值为1时追加到列后面(按列连接:axis=1)
  • join: 合并方式,其他轴上的数据是按交集(inner)还是并集(outer)进行合并
  • ignore_index: 是否保留原来的索引
  • keys: 连接关系,使用传递的键作为最外层级别来构造层次结构索引,就是给每个表指定一个一级索引
  • names: 索引的名称,包括多层索引
  • verify_integrity: 是否检测内容重复;参数为True时,如果合并的数据与原数据包含索引相同的行,则会报错
  • copy: 如果为False,则不要深拷贝

1.按行连接

pd.concat()的基本操作可以实现df.append()功能

操作中ignore_index和sort参数的作用是一样的,axis默认取值为0,即按行连接

import pandas as pd
df1 = pd.DataFrame({'x':[1,2],'y':[3,4]})
df2 = pd.DataFrame({'x':[5,6],'y':[7,8]})
res1 = pd.concat([df1,df2])
# 效果同上
res2 = df1.append(df2)

df1

df2

res1

res2 

2.按列连接 

如果要将多个DataFrame按列拼接在一起,可以传入axis=1参数,这会将不同的数据追加到列的后面,索引无法对应的位置上将值填充为NaN

import pandas as pd
df1 = pd.DataFrame({'x':[1,2],'y':[3,4]})
df2 = pd.DataFrame({'x':[5,6,0],'y':[7,8,0]})
res = pd.concat([df1,df2], axis=1)

df1

df2

res 

该例子中,df2比df1多一行,合并后df1的部分为NaN 

3.合并交集

上述两个练习案例的连接操作会得到两个表内容的并集(默认是join='outer')

合并交集需要将join参数进行改变 join='inner'

import pandas as pd
df1 = pd.DataFrame({'x':[1,2],'y':[3,4]})
df2 = pd.DataFrame({'x':[5,6,0],'y':[7,8,0]})
# 按列合并交集
# 传入join='inner'取得两个DataFrame的共有部分,去除了df1没有的第三行内容
res = pd.concat([df1,df2], axis=1, join='inner')

df1

df2

res 

扩展 

通过reindex()方法也可以实现取交集功能

# 两种方法
res1 = pd.concat([df1,df2],axis=1).reindex(df1.index)
res2 = pd.concat([df1,df2.reindex(df1.index)],axis=1)

res1

res2 

4.与序列合并 

import pandas as pd
z = pd.Series([9,9],name='z')
df = pd.DataFrame({'x':[1,2],'y':[3,4]})
# 将序列加到新列
res = pd.concat([df,z],axis=1)

z

df

res 

5.指定索引

import pandas as pd
df1 = pd.DataFrame({'x':[1,2],'y':[3,4]})
df2 = pd.DataFrame({'x':[5,6],'y':[7,8]})
# 指定索引名
res1 = pd.concat([df1,df2], keys=['a','b'])
# 以字典形式传入
dict = {'a':df1, 'b':df2}
res2 = pd.concat(dict)
# 横向合并,指定索引
res3 = pd.concat([df1,df2], axis=1, keys=['a','b'])

df1

df2

res1

res2

res3 

到此这篇关于Pandas数据连接pd.concat的实现的文章就介绍到这了,更多相关Pandas数据连接pd.concat内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python简单几步画个钻石戒指

    Python简单几步画个钻石戒指

    这篇文章主要介绍了Python简单几步画个钻石戒指,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-09-09
  • numpy中loadtxt 的用法详解

    numpy中loadtxt 的用法详解

    这篇文章主要介绍了numpy中loadtxt 的用法详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-08-08
  • Python实现直方图均衡基本原理解析

    Python实现直方图均衡基本原理解析

    这篇文章主要介绍了Python实现直方图均衡基本原理,本文给大家介绍的非常详细,具有一定的参考借鉴价值 ,需要的朋友可以参考下
    2019-08-08
  • Python3结合Dlib实现人脸识别和剪切

    Python3结合Dlib实现人脸识别和剪切

    本篇文章给大家详细分析了Python3结合Dlib实现人脸识别和剪切这个技术,对此有兴趣的朋友参考学习下。
    2018-01-01
  • Web服务器框架 Tornado简介

    Web服务器框架 Tornado简介

    Tornado Web Server 是使用Python编写出來的一个极轻量级、高可伸缩性和非阻塞IO的Web服务器软件,著名的 Friendfeed 网站就是使用它搭建的。
    2014-07-07
  • Python和php通信乱码问题解决方法

    Python和php通信乱码问题解决方法

    Python是在windows下的客户端,用的是cp936编码,php用的是utf-8编码,如果单纯使用urllib.urlencode编码之后post发送的话,php接收过来的中文会是类似\xb0\xe1这种形式的编码
    2014-04-04
  • python每隔N秒运行指定函数的方法

    python每隔N秒运行指定函数的方法

    这篇文章主要介绍了python每隔N秒运行指定函数的方法,涉及Python的线程与时间操作技巧,非常具有实用价值,需要的朋友可以参考下
    2015-03-03
  • Python中的集合类型知识讲解

    Python中的集合类型知识讲解

    这篇文章主要介绍了Python中的集合类型知识讲解,是Python入门学习中的基础知识,需要的朋友可以参考下
    2015-08-08
  • 使用pandas实现筛选出指定列值所对应的行

    使用pandas实现筛选出指定列值所对应的行

    这篇文章主要介绍了使用pandas实现筛选出指定列值所对应的行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-12-12
  • 从python读取sql的实例方法

    从python读取sql的实例方法

    在本篇内容里小编给各位整理的是关于从python读取sql的知识点总结,需要的朋友们可以学习参考下。
    2020-07-07

最新评论