Pandas 筛选和删除目标值所在的行的实现
更新时间:2022年07月24日 09:27:36 作者:山茶花开时。
本文主要介绍了Pandas筛选和删除目标值所在的行的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
1.筛选出目标值所在行
单列筛选
# df[列名].isin([目标值])对当前列中存在目标值的行会返回True,不存在的返回False df[df[列名].isin([目标值])]
练习案例
import pandas as pd df_bom_data = pd.DataFrame([['A123',1200,5], ['B456',550,2], ['C437',500,10], ['D112',621,7], ['E211',755,11], ['F985',833,8] ],columns=['Material','Price','Quantity']) df_material_shortage_data = pd.DataFrame([['A123','2022/6/21',100], ['B456','2022/6/22',120], ['C437','2022/6/23',250] ],columns=['Material','Schedule','LT']) # 筛选出df_bom_data表中只包含df_material_shortage_data表中Material的行记录 df_bom_data = df_bom_data[df_bom_data['Material'].isin(df_material_shortage_data['Material'])]
df_bom_data
df_material_shortage_data
df_bom_data(处理后)
多列筛选
# 同时满足用&连接,或的话用 | 连接 df[df[列名].isin([目标值]) & df[列名].isin([目标值])] df[df[列名].isin([目标值]) | df[列名].isin([目标值])]
练习案例
import pandas as pd df = pd.DataFrame([['L123','A',0], ['L456','A',1], ['L437','C',0], ['L112','B',1], ['L211','A',0], ['L985','B',1] ],columns=['Material','Level','Passing']) # 筛选出指定列都有目标值的行 res1 = df[df['Level'].isin(['A','C']) & df['Passing'].isin([0])] # 筛选出至少有一列有目标值的行 res2 = df[df['Level'].isin(['A','C']) | df['Passing'].isin([0])]
df
res1
res2
2.删除目标值所在的行
练习案例
import pandas as pd import numpy as np df_bom_data = pd.DataFrame([['A123',1200,5], ['B456',np.nan,np.nan], ['C437',500,10] ],columns=['Material','Price','Quantity']) df_material_shortage_data = pd.DataFrame([['A123','2022/6/21',100], ['B456','2022/6/22',120], ['C437','2022/6/23',250] ],columns=['Material','Schedule','LT']) # 筛选出df_bom_data中'Price'和'Quantity'两列字段的值都为空(nans)的行 df_isnull_bom_data = df_bom_data[pd.isnull(df_bom_data[df_bom_data.columns.tolist()[1:]]).all(axis=1)] # df_material_shortage_data表删除all_isnull_df_bom_data表中的Material df_material_shortage_data = df_material_shortage_data[~df_material_shortage_data['Material'].isin(df_isnull_bom_data['Material'])]
df_bom_data
df_material_shortage_data
df_isnull_bom_data
df_material_shortage_data(处理后)
扩展补充案例:删除列为指定值所在的行
import pandas as pd df = pd.DataFrame([[0,1,2,3], [4,5,6,7], [8,9,10,11] ],columns=['A','B','C','D']) # 通过重新取值,数据筛选后重新赋值,达到删除列为指定值的行数据 # 删除A列中值为0的那一行记录 df = df[df['A'] != 0]
df
df(处理后)
到此这篇关于Pandas 筛选和删除目标值所在的行的实现的文章就介绍到这了,更多相关Pandas 筛选和删除目标值所在的行内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
如何在Django中添加没有微秒的 DateTimeField 属性详解
这篇文章主要给大家介绍了关于如何在Django中添加没有微秒的 DateTimeField 属性的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2019-01-01
最新评论