numpy.reshape(-1,1)的具体使用

 更新时间:2022年07月24日 15:22:31   作者:Pikachu_simple  
本文主要介绍了numpy.reshape(-1,1)的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

数组新的shape属性应该要与原来的配套,如果等于-1的话,那么Numpy会根据剩下的维度计算出数组的另外一个shape属性值。

举个例子:

x = np.array([[2, 0], [1, 1], [2, 3]])

指定新数组行为3,列为,2,则:

y = x.reshape(3,2)
 
y
Out[43]: 
array([[2, 0],
       [1, 1],
       [2, 3]])

指定新数组列为1,则:

y = x.reshape(-1,1)
 
y
Out[34]: 
array([[2],
       [0],
       [1],
       [1],
       [2],
       [3]])

指定新数组列为2,则:

y = x.reshape(-1,2)
 
y
Out[37]: 
array([[2, 0],
       [1, 1],
       [2, 3]])

指定新数组行为1,则:

y = x.reshape(1,-1)
 
y
Out[39]: array([[2, 0, 1, 1, 2, 3]])

指定新数组行为2,则:

y = x.reshape(2,-1)
 
y
Out[41]: 
array([[2, 0, 1],
       [1, 2, 3]])

numpy中reshape(-1,1)与reshape(1,-1)的作用

如果你的数据只有一个特征,可以用reshape(-1,1)改变你的数据形状;或者如果你的数据只包含一个样本,可以使用reshape(1,-1)来改变。

e = np.array([1]) #只包含一个数据
f = e.reshape(1,-1) #改变形状,输出f之后发现它已经变成了二维数据
import numpy as np
a = np.array([[1,2,3],[4,5,6]]) #是两行三列的数据,二维
b = np.array([1,2])    #是一维数据
c = b.reshape(-1,1)    #c已经变成了二维数据,变成了两行一列
d = b.reshape(1,-1)    #d变成了一行两列的数据,
print('b.shape is {0}'.format(b.shape))
print(b)
print('c.shape is {0}'.format(c.shape))
print(c)
print('d.shape is {0},d array is {1}'.format(d.shape,d))

可以发现reshape(-1,1)是将一维数据在行上变化,而reshape(1,-1)是将一维数据在列上变化

到此这篇关于numpy.reshape(-1,1)的具体使用的文章就介绍到这了,更多相关numpy.reshape(-1,1)内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python Serial串口的简单数据收发方式

    Python Serial串口的简单数据收发方式

    这篇文章主要介绍了Python Serial串口的简单数据收发方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • Python绘制地理图表可视化神器pyecharts

    Python绘制地理图表可视化神器pyecharts

    这篇文章主要介绍了Python绘制地理图表可视化神器pyecharts,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-07-07
  • python之NAN和INF值处理方式

    python之NAN和INF值处理方式

    这篇文章主要介绍了python之NAN和INF值处理方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • numpy 对矩阵中Nan的处理:采用平均值的方法

    numpy 对矩阵中Nan的处理:采用平均值的方法

    今天小编就为大家分享一篇numpy 对矩阵中Nan的处理:采用平均值的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • 一文详解如何实现PyTorch模型编译

    一文详解如何实现PyTorch模型编译

    这篇文章主要为大家介绍了如何实现PyTorch 模型编译详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-04-04
  • python实现感知器

    python实现感知器

    这篇文章主要为大家详细介绍了python实现感知器的相关资料,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-12-12
  • django使用定时任务django_apscheduler的实现

    django使用定时任务django_apscheduler的实现

    定时任务无论是个人开发还是企业业务都是需要的,本文主要介绍了django使用定时任务django_apscheduler的实现,减少请求时需要用户等待的时间,感兴趣的可以了解一下
    2021-08-08
  • 从零开始的TensorFlow+VScode开发环境搭建的步骤(图文)

    从零开始的TensorFlow+VScode开发环境搭建的步骤(图文)

    这篇文章主要介绍了从零开始的TensorFlow+VScode开发环境搭建的步骤(图文),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-08-08
  • Python+OpenCV手势检测与识别Mediapipe基础篇

    Python+OpenCV手势检测与识别Mediapipe基础篇

    网上搜到了一些关于手势处理的实验,我在这儿简单的实现一下,下面这篇文章主要给大家介绍了关于Python+OpenCV手势检测与识别Mediapipe基础篇的相关资料,需要的朋友可以参考下
    2022-12-12
  • Python数据结构之栈、队列及二叉树定义与用法浅析

    Python数据结构之栈、队列及二叉树定义与用法浅析

    这篇文章主要介绍了Python数据结构之栈、队列及二叉树定义与用法,结合具体实例形式分析了Python数据结构中栈、队列及二叉树的定义与使用相关操作技巧,需要的朋友可以参考下
    2018-12-12

最新评论