python中pandas常用命令详解

 更新时间:2022年07月25日 11:48:35   作者:坐望云起  
pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的,这篇文章主要介绍了python中pandas常用命令,需要的朋友可以参考下

pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。

1、pandas

pandas 是一个多功能且功能强大的数据科学库。 

2、读取数据

pd.read_csv("data.csv")

3、读取指定列

pd.read_csv("data.csv", usecols=["date", "price"])

4、读取并解析日期

pd.read_csv("data.csv", parse_dates=["date"])

5、读取时指定数据类型

        在读取时设置类别数据类型可以节省内存。

pd.read_csv("data.csv", dtype={"house_type": "category"})

6、读取时设置索引

pd.read_csv("data.csv", index_col="date")

7、设置读取的行数

pd.read_csv("data.csv", nrows=100)

8、读取时跳过行数

pd.read_csv("data.csv", skiprows=[1, 5])  # skips line 1 and 5
pd.read_csv("data.csv", skiprows=100)  # skips the first 100 lines
pd.read_csv("data.csv", skiprows=lambda x: x > 0 and np.random.rand() > 0.1) # skip 90% of the rows

9、指定NA值

pd.read_csv("data.csv", na_values=["?"])

10、设置布尔值

pd.read_csv("data.csv", true_values=["yes"], false_values=["no"])

11、一次读取多个文件后合并

import glob
import os
files = glob.glob("file_*.csv")
result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)

12、复制数据

df = pd.read_clipboard() 

13、从 PDF 文件中读取表格

from tabula import read_pdf
# Read pdf into list of DataFrame
df = read_pdf('test.pdf', pages='all')

14、快速可视化数据集

import pandas_profiling
df = pd.read_csv("data.csv")
profile = df.profile_report(title="Pandas Profiling Report")
profile.to_file(output_file="output.html")

15、按dtype过滤列

# 选择
df.select_dtypes(include="number")
df.select_dtypes(include=["category", "datetime"])
 
# 排除
df.select_dtypes(exclude="object")

16、推断数据类型

df.infer_objects().dtypes

17、向下转换数值类型

pd.to_numeric(df.numeric_col, downcast="integer") # smallest signed int dtype
pd.to_numeric(df.numeric_col, downcast="float")  # smallest float dtype

18、防止错误值并填充

# apply to whole data frame
df = df.apply(pd.to_numeric, errors="coerce")
# apply to specific columns
pd.to_numeric(df.numeric_column, errors="coerce")
# filling NA values with zero
pd.to_numeric(df.numeric_column, errors="coerce").fillna(0)

19、按列数据类型转换

df = df.astype(
    {
        "date": "datetime64[ns]",
        "price": "int",
        "is_weekend": "bool",
        "status": "category",
    }
)

20、重命名列

df = df.rename({"PRICE": "price", "Date (mm/dd/yyyy)": "date"}, axis=1)

21、添加后缀和前缀

df.add_prefix("pre_")
df.add_suffix("_suf")

22、从原列创建新列

# create new column of Fahrenheit values from Celcius
df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32)

23、在特定位置插入列

random_col = np.random.randint(10, size=len(df))
df.insert(3, 'random_col', random_col) # inserts at third column

24、三元表达式

df["logic"] = np.where(df["price"] > 5, "high", "low")

25、删除列

df.drop('col1', axis=1, inplace=True)
df = df.drop(['col1','col2'], axis=1)
s = df.pop('col')
del df['col']
df.drop(df.columns[0], inplace=True)

26、修改列名

df.columns = df.columns.str.lower()
df.columns = df.columns.str.replace(' ', '_')

27、判断包含

df['name'].str.contains("John")
df['phone_num'].str.contains('...-...-....', regex=True)  # regex
df['email'].str.contains('gmail')

28、根据正则查找

pattern = '([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\\.([A-Z]{2,4})'
df['email'].str.findall(pattern, flags=re.IGNORECASE)

29、检查缺失值并打印缺失百分比

def missing_vals(df):
    """prints out columns with perc of missing values"""
    missing = [
        (df.columns[idx], perc)
        for idx, perc in enumerate(df.isna().mean() * 100)
        if perc > 0
    ]
 
    if len(missing) == 0:
        return "no missing values"
    
    # sort desc by perc
    missing.sort(key=lambda x: x[1], reverse=True)
 
    print(f"There are a total of {len(missing)} variables with missing values\n")
 
    for tup in missing:
        print(str.ljust(f"{tup[0]:<20} => {round(tup[1], 3)}%", 1))
missing_vals(df)

30、处理缺失值

# drop 
df.dropna(axis=0)
df.dropna(axis=1)
# impute
df.fillna(0)
df.fillna(method="ffill")
df.fillna(method='bfill')
# replace
df.replace( -999, np.nan)
df.replace("?", np.nan)
# interpolate
ts.interpolate() # time series
df.interpolate() # fill all consecutive values forward
df.interpolate(limit=1) # fill one consecutive value forward
df.interpolate(limit=1, limit_direction="backward")
df.interpolate(limit_direction="both")

31、从今天/之前获取 X 小时/天/周

# from today
date.today() + datetime.timedelta(hours=30)
date.today() + datetime.timedelta(days=30)
date.today() + datetime.timedelta(weeks=30)
 
# ago
date.today() - datetime.timedelta(days=365)

32、过滤两个日期

df[(df["Date"] > "2015-01-01") & (df["Date"] < "2017-01-01")]

33、按日/月/年过滤

df[(df["Date"] > "2015-01-01") & (df["Date"] < "2017-01-01")]

34、格式化数据格式

format_dict = {
    "Date": "{:%d/%m/%y}",
    "Open": "${:.2f}",
    "Close": "${:.2f}",
    "Volume": "{:,}",
}
 
df.style.format(format_dict)

35、设置数据颜色

(
    df.style.format(format_dict)
    .hide_index()
    .highlight_min(["Open"], color="red")
    .highlight_max(["Open"], color="green")
    .background_gradient(subset="Close", cmap="Greens")
    .bar('Volume', color='lightblue', align='zero')
    .set_caption('Tesla Stock Prices in 2017')
)

36、获取一列中最大最小项的id

df['col'].idxmin()
df['col'].idxmax()

37、对数据列应用函数

df.applymap(lambda x: np.log(x))

38、随机打乱数据

df.sample(frac=1, random_state=7).reset_index(drop=True)

39、时间序列的百分比变化

df['col_name'].pct_change()

40、分配等级

df['rank'] = df['column_to_rank'].rank()

41、检查内存占用

df.memory_usage().sum() / (1024**2) #converting to MB

42、将列的值分解为多行

df.explode("col_name").reset_index(drop=True)

43、将数量较小的类别转换为“其他”

subclass = df.MSSubClass
subclass.value_counts()
top_five = subclass.value_counts().nlargest(5).index
mssubclass_new = subclass.where(subclass.isin(top_five), other="Other")
mssubclass_new.value_counts()

到此这篇关于python中pandas常用命令的文章就介绍到这了,更多相关python pandas常用命令内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python矩阵列的实现示例

    python矩阵列的实现示例

    在Python和NumPy库的帮助下,矩阵列可以很容易地进行各种操作,本文主要介绍了python矩阵列的实现示例,具有一定的参考价值,感兴趣的可以了解一下
    2024-02-02
  • Python爬虫抓取指定网页图片代码实例

    Python爬虫抓取指定网页图片代码实例

    这篇文章主要介绍了Python爬虫抓取指定网页图片代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-07-07
  • python 定时器每天就执行一次的实现代码

    python 定时器每天就执行一次的实现代码

    这篇文章主要介绍了python 定时器每天就执行一次的实现代码,代码简单易懂非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-08-08
  • pycharm实现在子类中添加一个父类没有的属性

    pycharm实现在子类中添加一个父类没有的属性

    这篇文章主要介绍了pycharm实现在子类中添加一个父类没有的属性,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • scrapy-splash简单使用详解

    scrapy-splash简单使用详解

    这篇文章主要介绍了scrapy-splash简单使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • 经验丰富程序员才知道的15种高级Python小技巧(收藏)

    经验丰富程序员才知道的15种高级Python小技巧(收藏)

    本文将介绍15个简洁的Python技巧,向着简洁更高效,学习易懂出发,具说只有经验丰富程序员才知道的15种高级Python小技巧,喜欢的朋友快来看看吧
    2021-10-10
  • python如何求100以内的素数

    python如何求100以内的素数

    在本篇文章里小编给大家分享的是关于python如何求100以内的素数的方法实例,需要的朋友们可以学习下。
    2020-05-05
  • nlp自然语言处理基于SVD的降维优化学习

    nlp自然语言处理基于SVD的降维优化学习

    这篇文章主要为大家介绍了nlp自然语言处理基于SVD的降维优化学习,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪
    2022-04-04
  • Python中字符串操作技巧

    Python中字符串操作技巧

    在编程中,字符串操作是一项基本技能,常见的操作包括大小写转换、字符串替换、倒序、统计、切片、切割、清理和对齐等,查找方法如find()、rfind()、index()和rindex()用于定位子串,字符串可以通过"+"号或join()方法拼接,去重技巧等,都是常见的字符串处理需求
    2024-10-10
  • 教你用Python爬取英雄联盟皮肤原画

    教你用Python爬取英雄联盟皮肤原画

    今天给大家带来的是关于Python的相关知识,文章围绕着用Python爬取英雄联盟皮肤原画展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
    2021-06-06

最新评论