python Pandas之DataFrame索引及选取数据
1.索引是什么
1.1 认识索引
先创建一个简单的DataFrame。
myList = [['a', 10, 1.1], ['b', 20, 2.2], ['c', 30, 3.3], ['d', 40, 4.4]] df1 = pd.DataFrame(data = myList) print(df1) -------------------------------- [out]: 0 1 2 0 a 10 1.1 1 b 20 2.2 2 c 30 3.3 3 d 40 4.4
DataFrame中有两种索引:
- 行索引(index):对应最左边那一竖列
- 列索引(columns):对应最上面那一横行
两种索引默认均为从0开始的自增整数。
# 输出行索引 print(df1.index) [out]: RangeIndex(start=0, stop=4, step=1) --------------------------------------- # 输出列索引 print(df1.columns) [out]: RangeIndex(start=0, stop=3, step=1) --------------------------------------- # 输出所有的值 print(df1.values) [out]: array([['a', 10, 1.1], ['b', 20, 2.2], ['c', 30, 3.3], ['d', 40, 4.4]], dtype=object)
1.2 自定义索引
可以使用 index 这个参数指定行索引,columns 这个参数指定列索引。
df2 = pd.DataFrame(myList, index = ['one', 'two', 'three', 'four'], columns = ['char', 'int', 'float']) print(df2) ----------------------------------------------------------- [out]: char int float one a 10 1.1 two b 20 2.2 three c 30 3.3 four d 40 4.4
输出此时的行索引和列索引:
# 输出行索引
print(df2.index)
[out]:
Index(['one', 'two', 'three', 'four'], dtype='object')
--------------------------------------------------------
# 输出列索引
print(df2.columns)
[out]:
Index(['char', 'int', 'float'], dtype='object')
2. 索引的简单使用
2.1 列索引
选择一列:
print(df2['char']) print(df2.char) # 两种方式输出一样 [out]: one a two b three c four d Name: char, dtype: object
注意此时方括号里面只传入一个字符串’char’,这样选出来的一列,结果的类型为Series
print(df2['char']) print(df2.char) # 两种方式输出一样 [out]: one a two b three c four d Name: char, dtype: object
选择多列:
print(df2[['char', 'int']]) [out]: char int one a 10 two b 20 three c 30 four d 40
注意此时方括号里面传入一个列表 [‘char’, ‘int’],选出的结果类型为 DataFrame。
如果只想选出来一列,却想返回 DataFrame 类型怎么办?
print(df2[['char']]) [out]: char one a two b three c four d --------------------------------------- type(df2[['char']]) [out]:pandas.core.frame.DataFrame
注意直接使用df2[0]取某一列会报错,除非columns是由下标索引组成的,比如df1那个样子,df1[0]就不会报错。
print(df1[0]) [out]: 0 a 1 b 2 c 3 d Name: 0, dtype: object ----------------------- print(df2[0]) [out]: KeyError: 0
2.2 行索引
2.2.1 使用[ ]
区别于选取列,此种方式[ ]中不再单独的传入一个字符串,而是需要使用冒号切片。
选取行标签从 ’two’ 到 ’three’ 的多行数据
print(df2['two': 'three']) [out]: char int float two b 20 2.2 three c 30 3.3
选取行标签为’two’这一行数据
# 此时返回的类型为DataFrame print(df2['two': 'two']) [out]: char int float two b 20 2.2
在[ ]中不仅可以传入行标签,还可以传入行的编号。
选取从第1行到第3行的数据(编号从0开始)
print(df2[1:4]) [out]: char int float two b 20 2.2 three c 30 3.3 four d 40 4.4
可以看到选取的数据是不包含方括号最右侧的编号所对应的数据的。
选取第1行的数据
print(df2[1:2]) [out]: char int float two b 20 2.2
2.2.2 使用.loc()和.iloc()
区别就是.loc()是根据行索引和列索引的值来选取数据,而.iloc()是根据从0开始的下标位置来进行索引的。
选取行:
使用.loc()
print(df2.loc['one']) [out]: char a int 10 float 1.1 Name: one, dtype: object ------------------------------------------- print(df2.loc[['one', 'three']]) [out]: char int float one a 10 1.1 three c 30 3.3
使用.iloc()
print(df2.iloc[0]) [out]: char a int 10 float 1.1 Name: one, dtype: object ------------------------------------------- print(df2.iloc[[0, 2]]) [out]: char int float one a 10 1.1 three c 30 3.3
到此这篇关于python Pandas之DataFrame索引及选取数据的文章就介绍到这了,更多相关python DataFrame索引 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
对python:threading.Thread类的使用方法详解
今天小编就为大家分享一篇对python:threading.Thread类的使用方法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2019-01-01python中使用sys模板和logging模块获取行号和函数名的方法
这篇文章主要介绍了python中使用sys模板和logging模块获取行号和函数名的方法,需要的朋友可以参考下2014-04-04Python3使用tracemalloc实现追踪mmap内存变化
这篇文章主要为大家详细介绍了在Python3中如何使用tracemalloc实现追踪mmap内存变化,文中的示例代码讲解详细,感兴趣的可以了解一下2023-03-03详解Django rest_framework实现RESTful API
这篇文章主要介绍了详解Django rest_framework实现RESTful API,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧2018-05-05
最新评论