pytorch中使用LSTM详解

 更新时间:2022年07月27日 09:01:59   作者:qyhyzard  
这篇文章主要介绍了pytorch中使用LSTM,可以在troch.nn模块中找到LSTM类,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的朋友可以参考一下

LSMT层

可以在troch.nn模块中找到LSTM类

lstm = torch.nn.LSTM(*paramsters)

1、__init__方法

首先对nn.LSTM类进行实例化,需要传入的参数如下图所示:

一般我们关注这4个:

  • input_size表示输入的每个token的维度,也可以理解为一个word的embedding的维度。
  • hidden_size表示隐藏层也就是记忆单元C的维度,也可以理解为要将一个word的embedding维度转变成另一个大小的维度。除了C,在LSTM中输出的H的维度与C的维度是一致的。
  • num_layers表示有多少层LSTM,加深网络的深度,这个参数对LSTM的输出的维度是有影响的(后文会提到)。
  • bidirectional表示是否需要双向LSTM,这个参数也会对后面的输出有影响。

2、forward方法的输入

将数据input传入forward方法进行前向传播时有3个参数可以输入,见下图:

  • 这里要注意的是input参数各个维度的意义,一般来说如果不在实例化时制定batch_first=True,那么input的第一个维度是输入句子的长度seq_len,第二个维度是批量的大小,第三个维度是输入句子的embedding维度也就是input_size,这个参数要与__init__方法中的第一个参数对应。
  • 另外记忆细胞中的两个参数h_0c_0可以选择自己初始化传入也可以不传,系统默认是都初始化为0。传入的话注意维度[bidirectional * num_layers, batch_size, hidden_size]。

3、forward方法的输出

forward方法的输出如下图所示:

一般采用如下形式:

out,(h_n, c_n) = lstm(x)

out表示在最后一层上,每一个时间步的输出,也就是句子有多长,这个out的输出就有多长;其维度为[seq_len, batch_size, hidden_size * bidirectional]。因为如果的双向LSTM,最后一层的输出会把正向的和反向的进行拼接,故需要hidden_size * bidirectional。h_n表示的是每一层(双向算两层)在最后一个时间步上的输出;其维度为[bidirectional * num_layers, batch_size, hidden_size]
假设是双向的LSTM,且是3层LSTM,双向每个方向算一层,两个方向的组合起来叫一层LSTM,故共会有6层(3个正向,3个反向)。所以h_n是每层的输出,bidirectional * num_layers = 6。c_n表示的是每一层(双向算两层)在最后一个时间步上的记忆单元,意义不同,但是其余均与 h_n一样。

LSTMCell

可以在troch.nn模块中找到LSTMCell类

lstm = torch.nn.LSTMCell(*paramsters)

它的__init__方法的参数设置与LSTM类似,但是没有num_layers参数,因为这就是一个细胞单元,谈不上多少层和是否双向。
forward输入和输出与LSTM均有所不同:

其相比LSTM,输入没有了时间步的概念,因为只有一个Cell单元;输出 也没有out参数,因为就一个Cell,out就是h_1h_1c_1也因为只有一个Cell单元,其没有层数上的意义,故只是一个Cell的输出的维度[batch_size, hidden_size].

代码演示如下:

rnn = nn.LSTMCell(10, 20) # (input_size, hidden_size)
input = torch.randn(2, 3, 10) # (time_steps, batch, input_size)
hx = torch.randn(3, 20) # (batch, hidden_size)
cx = torch.randn(3, 20)
output = []
# 从输入的第一个维度也就是seq_len上遍历,每循环一次,输入一个单词
for i in range(input.size()[0]):
		# 更新细胞记忆单元
        hx, cx = rnn(input[i], (hx, cx))
        # 将每个word作为输入的输出存起来,相当于LSTM中的out
        output.append(hx)
output = torch.stack(output, dim=0)

到此这篇关于pytorch中使用LSTM详细解说的文章就介绍到这了,更多相关pytorch使用LSTM内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python+playwright 元素操作示例代码

    python+playwright 元素操作示例代码

    Playwright 可以与 HTML 输入元素交互,例如文本输入、复选框、单选按钮、选择选项、鼠标单击、键入字符、键和快捷方式以及上传文件和焦点元素,这篇文章主要介绍了python+playwright 元素操作,需要的朋友可以参考下
    2023-10-10
  • python实现照片集变成视频的代码实现

    python实现照片集变成视频的代码实现

    看着电脑里乱七八糟的照片,有大有小,宽高不一,突然想找个方式把他们统一起来,然后做成视频更好,所以本文给大家介绍了python实现照片集变成视频的实现,需要的朋友可以参考下
    2024-10-10
  • Python批量生成字幕图片的方法详解

    Python批量生成字幕图片的方法详解

    这篇文章主要为大家详细介绍了如何利用Python语言实现批量生成字幕图片用于视频剪辑,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2022-05-05
  • python 一个figure上显示多个图像的实例

    python 一个figure上显示多个图像的实例

    今天小编就为大家分享一篇python 一个figure上显示多个图像的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python实现K折交叉验证法的方法步骤

    Python实现K折交叉验证法的方法步骤

    这篇文章主要介绍了Python实现K折交叉验证法的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • Django项目基础配置和基本使用过程解析

    Django项目基础配置和基本使用过程解析

    这篇文章主要介绍了Django项目基础配置和基本使用过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-11-11
  • python三引号如何输入

    python三引号如何输入

    在本篇文章里小编给大家整理的是关于python三引号输入方法及相关实例,需要的朋友们可以学习下。
    2020-07-07
  • python 正则表达式如何实现重叠匹配

    python 正则表达式如何实现重叠匹配

    这篇文章主要介绍了python 正则表达式如何实现重叠匹配,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07
  • 详解Python 实现元胞自动机中的生命游戏(Game of life)

    详解Python 实现元胞自动机中的生命游戏(Game of life)

    本篇文章主要介绍了详解Python 实现元胞自动机中的生命游戏(Game of life),具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • 详析Python面向对象中的继承

    详析Python面向对象中的继承

    这篇文章主要详析Python面向对象中的继承,类继承作为python的三大特性之一,在我们学习python的时候是必不可少的。使用类继承,能够大大减少重复代码的编写,下文详细内容需要的小伙伴可以参考一下
    2022-03-03

最新评论