python装饰器底层原理详解

 更新时间:2022年07月28日 14:06:17   作者:程序媛_  
这篇文章主要介绍了python装饰器底层原理讲解,被装饰对象加上装饰器,被装饰对象获得了更强大的功能,更多相关内容,需要的朋友可以参考一下

1 python装饰器的作用

被装饰对象加上装饰器(戴了个帽子),被装饰对象获得了更强大的功能。

2 python装饰器的原理

  • python装饰器本身是一个函数
  • 这个函数的参数是一个函数对象
  • 这个函数的返回值也是一个函数对象,这个函数的功能更强
  • 大python装饰器是python的一个语法糖(更简便的语法)

3 python装饰器的实现

3.1 最简陋的装饰器

# 自定义装饰器
def super_(func):
    def wrapper():
        print('把内裤穿到外面来,变身超人')
        func()
        print('会飞!')
    return wrapper
@super_
def man():
    print('会走')
# @super_原始语法结构
# man = super_(man)
man()

运行结果如下:

3.2 给有返回值的函数加上装饰器

'''
    给有返回值的函数加上装饰器
'''
import time
def decorate(func):
    def wrapper():
        print('开始执行时间:' + time.strftime('%Y-%m-%d %H:%M:%S'))
        result = func()
        print('结束执行时间:' + time.strftime('%Y-%m-%d %H:%M:%S'))
        return result
    return wrapper
@decorate
def normal_func():
    time.sleep(1)
    print('normal_func执行中......')
    return 2 + 2
# @decorate原始语法结构
# normal_func = decorate(normal_func)
print(normal_func())

运行结果如下:

3.3 给有返回值和参数的函数加上装饰器

'''
    给有返回值和参数的函数加上装饰器
'''
import time
def decorate(func):
    def wrapper(*args, **kwargs):
        print('开始执行时间:' + time.strftime('%Y-%m-%d %H:%M:%S'))
        result = func(*args, **kwargs)
        print('结束执行时间:' + time.strftime('%Y-%m-%d %H:%M:%S'))
        return result
    return wrapper
@decorate
def normal_func1(a, b):
    time.sleep(1)
    print('normal_func1执行中......')
    return a + b
@decorate
def normal_func2(a, b, c):
    time.sleep(1)
    print('normal_func2执行中......')
    return a + b + c
# @decorate原始语法结构
# normal_func1 = decorate(normal_func1)
# normal_func2 = decorate(normal_func2)
print(normal_func1(1, 2))
print(normal_func2(1, 2, 3))

运行结果如下:

可变参数原理:

1 定义时使用可变参数:在函数定义时使用args,在函数调用时,所有未匹配到的位置参数,会被放到args这个元组当中。
在函数定义时使用**kwargs,在函数调用时,所有未匹配到的关键字参数,会被放到kwargs这个字典当中。
2 调用时使用可变参数:在函数调用时使用args,是把args这个元组解包,元组内的每个元素作为函数的位置参数传递。
在函数调用时使用**kwargs,是把kwargs这个字典解包,字典内的每个元素作为函数的关键字参数传递。

def test1(a, b, c, d):
    print(a+b+c+d)

print('传统调用'.center(60, '='))
test1(1, 2, 3, 4)    # 位置参数
test1(b=2, c=3, d=4, a=1)    # 关键字参数

# 在函数定义时使用*args,在函数调用时,所有未匹配到的位置参数,会被放到args这个元组当中
# 在函数定义时使用**kwargs,在函数调用时,所有未匹配到的关键字参数,会被放到kwargs这个字典当中
def test2(*args, **kwargs):
    print(args)
    print(type(args))
    print(kwargs)
    print(type(kwargs))
print('定义时使用可变参数'.center(60, '='))
test2(1, 2, 3, 4, b=5, c=6)
# 在函数调用时使用*args,是把args这个元组解包,元组内的每个元素作为函数的位置参数传递。
# 在函数调用时使用**kwargs,是把kwargs这个字典解包,字典内的每个元素作为函数的关键字参数传递。
print('调用时使用可变参数'.center(60, '='))
test1(*(1, 2, 3, 4))
test1(**{'a':1, 'b':2, 'c':3, 'd':4})
test1(*(1, 2), **{'c':3, 'd':4})

运行结果如下:

3.4 让我还是那个我

'''
    让我还是那个我
'''
import time
from functools import wraps
def decorate(func):
    @wraps(func)    # 把wrapper的内置属性转换成func的内置属性(name/doc)
    def wrapper(*args, **kwargs):
        print('开始执行时间:' + time.strftime('%Y-%m-%d %H:%M:%S'))
        result = func(*args, **kwargs)
        print('结束执行时间:' + time.strftime('%Y-%m-%d %H:%M:%S'))
        return result
    # wrapper.__name__ = func.__name__
    # wrapper.__doc__ = func.__doc__
    return wrapper
@decorate
def normal_func(a, b):
    '''
        这是一个测试函数
    '''
    time.sleep(1)
    print('normal_func1执行中......')
    return a + b
print(normal_func.__name__)
print(normal_func.__doc__)

4 python装饰器在自动化测试框架中的应用

4.1 从一个需求开始

对自动化测试脚本需要增加日志打印功能:

  • 测试用例执行前打印:测试用例【xxx】开始执行
  • 测试用例执行完打印:测试用例【xxx】执行完毕
  • 测试用例执行完打印:测试用例【xxx】执行耗时:xx秒
  • 测试用例执行完打印分割线
import time
from functools import wraps

def log_decorator(func):
    @wraps(func)    # 把wrapper的内置属性转换成func的内置属性(name/doc)
    def wrapper(*args, **kwargs):
        print('测试用例[{}]开始执行'.format(func.__name__))
        time_start = time.time()
        result = func(*args, **kwargs)
        time_end = time.time()
        print('测试用例[{}]执行完毕'.format(func.__name__))
        print('测试用例[{}]执行耗时:%.2f秒'.format(func.__name__) % (time_end - time_start))
        print('分割线'.center(60, '='))
        return result
    return wrapper

到此这篇关于python装饰器底层原理讲解的文章就介绍到这了,更多相关python装饰器底层原理讲解内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python实战之IQ测试系统的实现

    Python实战之IQ测试系统的实现

    通常,智商测试测验一个人在数字、空间、逻辑、词汇、创造、记忆等方面的能力。本文将利用Python实现一个IQ测试系统,感兴趣的可以了解一下
    2022-09-09
  • Python实现Matplotlib,Seaborn动态数据图的示例代码

    Python实现Matplotlib,Seaborn动态数据图的示例代码

    这篇文章主要为大家详细介绍了如何让Matplotlib、Seaborn的静态数据图动起来,变得栩栩如生。文中的示例代码讲解详细,感兴趣的小伙伴可以学习一下
    2022-05-05
  • Python实现动态二维码生成的示例代码

    Python实现动态二维码生成的示例代码

    这篇文章主要和大家分享两个制作二维码的Python库,可以生成普通的二维码、图片背景版二维码、动图GIF版二维。文中的示例代码讲解详细,感兴趣的可以学习一下
    2022-05-05
  • pytorch 实现在测试的时候启用dropout

    pytorch 实现在测试的时候启用dropout

    这篇文章主要介绍了pytorch 实现在测试的时候启用dropout的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • python禁用键鼠与提权代码实例

    python禁用键鼠与提权代码实例

    这篇文章主要介绍了python禁用键鼠与提权代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • Pandas之Dropna滤除缺失数据的实现方法

    Pandas之Dropna滤除缺失数据的实现方法

    这篇文章主要介绍了Pandas之Dropna滤除缺失数据的实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-06-06
  • 使用Python绘制三种概率曲线详解

    使用Python绘制三种概率曲线详解

    这篇文章主要为大家分享了如何利用Python实现概率曲线的绘制,文中绘制了正态分布的曲线和指数分布的曲线,感兴趣的可以了解一下
    2022-03-03
  • 利用python计算均值、方差和标准差(Numpy和Pandas)

    利用python计算均值、方差和标准差(Numpy和Pandas)

    这篇文章主要给大家介绍了关于利用python计算均值、方差和标准差的相关资料,Numpy在Python中是一个通用的数组处理包,它提供了一个高性能的多维数组对象和用于处理这些数组的工具,它是使用Python进行科学计算的基础包,需要的朋友可以参考下
    2023-11-11
  • python去除字符串中的换行符

    python去除字符串中的换行符

    这篇文章主要介绍了python去除字符串中的换行符的相关资料,然后在文章下面给大家补充介绍了python去除空格和换行符的方法,需要的朋友可以参考下
    2017-10-10
  • python 按照固定长度分割字符串的方法小结

    python 按照固定长度分割字符串的方法小结

    这篇文章主要介绍了借助python脚本,可以轻松实现,原理就是:字符串的按照固定长度拆分
    2018-04-04

最新评论