基于Pytorch实现逻辑回归

 更新时间:2022年07月30日 10:15:51   作者:AI炮灰  
这篇文章主要为大家详细介绍了基于Pytorch实现逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了Pytorch实现逻辑回归的具体代码,供大家参考,具体内容如下

1.逻辑回归

 线性回归表面上看是“回归问题”,实际上处理的问题是“分类”问题,逻辑回归模型是一种广义的回归模型,其与线性回归模型有很多的相似之处,模型的形式也基本相同,唯一不同的地方在于逻辑回归会对y作用一个逻辑函数,将其转化为一种概率的结果。逻辑函数也称为Sigmoid函数,是逻辑回归的核心。

2.基于Pytorch实现逻辑回归

import torch as t
import matplotlib.pyplot as plt
from torch import nn
from torch.autograd import Variable
import numpy as np
 
 
# 构造数据集
n_data = t.ones(100, 2)
# normal()返回一个张量,张量里面的随机数是从相互独立的正态分布中随机生成的。
x0 = t.normal(2*n_data, 1)
y0 = t.zeros(100)
x1 = t.normal(-2*n_data, 1)
y1 = t.ones(100)
 
# 把数据给合并以下,并且数据的形式必须是下面形式
x = t.cat((x0, x1), 0).type(t.FloatTensor)
y = t.cat((y0, y1), 0).type(t.FloatTensor)
 
# 观察制造的数据
plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0)
plt.show()
 
# 建立逻辑回归
class LogisticRegression(nn.Module):
    def __init__(self):
        super(LogisticRegression, self).__init__()
        self.lr = nn.Linear(2, 1)
        self.sm = nn.Sigmoid()
    def forward(self, x):
        x = self.lr(x)
        x = self.sm(x)
        return x
# 实例化
logistic_model = LogisticRegression()
# 看GPU是否可使用,如果可以使用GPU否则不使用
if t.cuda.is_available():
    logistic_model.cuda()
# 定义损失函数和优化函数
criterion = nn.BCELoss()
optimizer = t.optim.SGD(logistic_model.parameters(), lr=1e-3, momentum=0.9)
# 训练模型
for epoch in range(1000):
    if t.cuda.is_available():
        x_data = Variable(x).cuda()
        y_data = Variable(y).cuda()
    else:
        x_data = Variable(x)
        y_data = Variable(y)
        out = logistic_model(x_data)
        loss = criterion(out, y_data)
        print_loss = loss.data.item()
        # 以0.5为阈值进行分类
        mask = out.ge(0.5).float()
        # 计算正确预测样本的个数
        correct = (mask==y_data).sum()
        # 计算精度
        acc = correct.item()/x_data.size(0)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # 每个200个epoch打印一次当前的误差和精度
        if(epoch+1)%200==0:
            print('*'*10)
            # 迭代次数
            print('epoch{}'.format(epoch+1))
            # 误差
            print('loss is {:.4f}'.format((print_loss)))
            # 精度
            print('acc is {:.4f}'.format(acc))
if __name__=="__main__":
    logistic_model.eval()
    w0, w1 = logistic_model.lr.weight[0]
    w0 = float(w0.item())
    w1 = float(w1.item())
    b = float(logistic_model.lr.bias.item())
    plot_x = np.arange(-7, 7, 0.1)
    plot_y = (-w0*plot_x-b)/w1
    plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0)
    plt.plot(plot_x, plot_y)
    plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • tensorflow从ckpt和从.pb文件读取变量的值方式

    tensorflow从ckpt和从.pb文件读取变量的值方式

    这篇文章主要介绍了tensorflow从ckpt和从.pb文件读取变量的值方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • Python读取Word(.docx)正文信息的方法

    Python读取Word(.docx)正文信息的方法

    这篇文章主要为大家详细介绍了Python读取Word(.docx)正文信息的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-03-03
  • python中常见错误及解决方法

    python中常见错误及解决方法

    在本篇内容里小编给大家分享的是一篇关于python中常见错误及解决方法的知识点内容,需要的朋友们参考下。
    2020-06-06
  • python 列表删除所有指定元素的方法

    python 列表删除所有指定元素的方法

    下面小编就为大家分享一篇python 列表删除所有指定元素的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • 在Python中存储字符串

    在Python中存储字符串

    这篇文章主要介绍了在Python中存储字符串,文章通过unicode展开主题相关内容,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-05-05
  • Python中关于Sequence切片的下标问题详解

    Python中关于Sequence切片的下标问题详解

    这篇文章主要给大家介绍了Python中关于Sequence切片下标问题的相关资料,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面来一起看看吧。
    2017-06-06
  • Django中URLconf和include()的协同工作方法

    Django中URLconf和include()的协同工作方法

    这篇文章主要介绍了Django中URLconf和include()的协同工作方法,Django是Python众人气框架中最著名的一个,需要的朋友可以参考下
    2015-07-07
  • Python OpenCV一个窗口中显示多幅图像

    Python OpenCV一个窗口中显示多幅图像

    大家好,本篇文章主要讲的是Python OpenCV一个窗口中显示多幅图像,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下,方便下次浏览
    2022-01-01
  • pandas多层索引的创建和取值以及排序的实现

    pandas多层索引的创建和取值以及排序的实现

    这篇文章主要介绍了pandas多层索引的创建和取值以及排序的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • Python连接SQL server数据库并进行简单查询的操作详解

    Python连接SQL server数据库并进行简单查询的操作详解

    SQL Server是微软推出的重量级的数据库,本文将给大家详细介绍了一下Python连接SQL server数据库详细流程,并通过代码示例给大家讲解的非常清除,具有一定的参考价值,需要的朋友可以参考下
    2024-02-02

最新评论