python 绘制3D图案例分享

 更新时间:2022年07月31日 14:58:13   作者:凭轩听雨199407  
这篇文章主要介绍了python 绘制3D图案例分享,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下,希望对你的学习有所帮助

1.散点图

代码

# This import registers the 3D projection, but is otherwise unused.
from mpl_toolkits.mplot3d import Axes3D  # noqa: F401 unused import

import matplotlib.pyplot as plt
import numpy as np

# Fixing random state for reproducibility
np.random.seed(19680801)
def randrange(n, vmin, vmax):
    '''
    Helper function to make an array of random numbers having shape (n, )
    with each number distributed Uniform(vmin, vmax).
    '''
    return (vmax - vmin)*np.random.rand(n) + vmin

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
n = 100
# For each set of style and range settings, plot n random points in the box
# defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].
for m, zlow, zhigh in [('o', -50, -25), ('^', -30, -5)]:
    xs = randrange(n, 23, 32)
    ys = randrange(n, 0, 100)
    zs = randrange(n, zlow, zhigh)
    ax.scatter(xs, ys, zs, marker=m)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()

输出:

输入的数据格式

这个输入的三个维度要求是三列长度一致的数据,可以理解为3个length相等的list。
用上面的scatter或者下面这段直接plot也可以。

fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot(h, z, t, '.', alpha=0.5)
plt.show()

输出:

2.三维表面 surface

代码

x = [12.7, 12.8, 12.9]
y = [1, 2, 3, 4]
temp = pd.DataFrame([[7,7,9,9],[2,3,4,5],[1,6,8,7]]).T
X,Y = np.meshgrid(x,y)  # 形成网格化的数据
temp = np.array(temp)
fig = plt.figure(figsize=(16, 16))
ax = fig.gca(projection='3d')
ax.plot_surface(Y,X,temp,rcount=1, cmap=cm.plasma, linewidth=1, antialiased=False,alpha=0.5) #cm.plasma
ax.set_xlabel('zone', color='b', fontsize=20)
ax.set_ylabel('h2o', color='g', fontsize=20)
ax.set_zlabel('Temperature', color='r', fontsize=20)

output:

输入的数据格式

这里x和y原本都是一维list,通过np.meshgrid可以将其形成4X3的二维数据,如下图所示:

而第三维,得是4X3的2维的数据,才能进行画图

scatter + surface图形展示

3. 三维瀑布图waterfall

代码

from matplotlib.collections import PolyCollection
import matplotlib.pyplot as plt
from matplotlib import colors as mcolors
import numpy as np

axes=plt.axes(projection="3d")

def colors(arg):
    return mcolors.to_rgba(arg, alpha=0.6)
verts = []
z1 = [1, 2, 3, 4]
x1 = np.arange(0, 10, 0.4)
for z in z1:
    y1 = np.random.rand(len(x1))
    y1[0], y1[-1] = 0, 0
    verts.append(list(zip(x1, y1)))
# print(verts)
poly = PolyCollection(verts, facecolors=[colors('r'), colors('g'), colors('b'),
                                         colors('y')])
poly.set_alpha(0.7)
axes.add_collection3d(poly, zs=z1, zdir='y')
axes.set_xlabel('X')
axes.set_xlim3d(0, 10)
axes.set_ylabel('Y')
axes.set_ylim3d(-1, 4)
axes.set_zlabel('Z')
axes.set_zlim3d(0, 1)
axes.set_title("3D Waterfall plot")
plt.show()

输出:

输入的数据格式

这个的输入我还没有完全搞懂,导致我自己暂时不能复现到其他数据,等以后懂了再回来补充。

4. 3d wireframe

code

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt

fig, (ax1, ax2) = plt.subplots(
    2, 1, figsize=(8, 12), subplot_kw={'projection': '3d'})

# Get the test data
X, Y, Z = axes3d.get_test_data(0.05)

# Give the first plot only wireframes of the type y = c
ax1.plot_wireframe(X, Y, Z, rstride=10, cstride=0)
ax1.set_title("Column (x) stride set to 0")

# Give the second plot only wireframes of the type x = c
ax2.plot_wireframe(X, Y, Z, rstride=0, cstride=10)
ax2.set_title("Row (y) stride set to 0")
plt.tight_layout()
plt.show()

output:

输入的数据格式

与plot_surface的输入格式一样,X,Y原本为一维list,通过np.meshgrid形成网格化数据。Z为二维数据。其中注意调节rstride、cstride这两个值实现行列间隔的调整。

自己试了下:

到此这篇关于python 绘制3D图案例分享的文章就介绍到这了,更多相关python 绘制3D图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Scrapy框架实现的登录网站操作示例

    Scrapy框架实现的登录网站操作示例

    这篇文章主要介绍了Scrapy框架实现的登录网站操作,结合实例形式分析了Scrapy登录网站cookies方式、post请求方式登录网站相关实现技巧,需要的朋友可以参考下
    2020-02-02
  • Python元组Tuple常用函数详解

    Python元组Tuple常用函数详解

    Python元组Tuple使用小括号()包裹,元素之间使用逗号,间隔,元组与列表相似,但元组的元素不可变,本文就给大家详细介绍一下元组的常用函数以及基本操作,感兴趣的朋友可以参考阅读下
    2023-07-07
  • Python列表如何更新值

    Python列表如何更新值

    在本篇内容中小编给大家整理的是一篇关于Python列表如何更新值的知识点,需要的朋友们可以学习下。
    2020-05-05
  • Python实现获取sonarqube数据

    Python实现获取sonarqube数据

    sonarqube是一款代码分析的工具,可以对通过soanrScanner扫描后的数据传递给sonarqube进行分析,本文为大家整理了Python获取sonarqube数据的方法,需要的可以参考下
    2023-05-05
  • 基于PyTorch实现一个简单的CNN图像分类器

    基于PyTorch实现一个简单的CNN图像分类器

    本文记录了一个简单的基于pytorch的图像多分类器模型构造过程,参考自Pytorch官方文档、磐创团队的《PyTorch官方教程中文版》以及余霆嵩的《PyTorch 模型训练实用教程》。从加载数据集开始,包括了模型设计、训练、测试等过程。
    2021-05-05
  • python interpret库训练模型助力机器学习

    python interpret库训练模型助力机器学习

    这篇文章主要为大家介绍了python interpret库训练模型功能特性,为你的机器学习提供便捷的路径,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01
  • 深入解析Python中的__builtins__内建对象

    深入解析Python中的__builtins__内建对象

    __builtins__ 是内建模块__builtin__中的对象,使用Python中的内建函数时会通过__builtins__引导,这里我们就来深入解析Python中的__builtins__内建对象,需要的朋友可以参考下
    2016-06-06
  • python opencv鼠标画矩形框之cv2.rectangle()函数

    python opencv鼠标画矩形框之cv2.rectangle()函数

    鼠标操作属于用户接口设计,以前一直使用Qt来做,但是如果只需要简单的鼠标,键盘操作,直接调用opencv库的函数也未尝不可,下面这篇文章主要给大家介绍了关于python opencv鼠标画矩形框cv2.rectangle()函数的相关资料,需要的朋友可以参考下
    2021-10-10
  • python字典保存为json后读取出错问题及解决

    python字典保存为json后读取出错问题及解决

    这篇文章主要介绍了python字典保存为json后读取出错问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02
  • 对pandas通过索引提取dataframe的行方法详解

    对pandas通过索引提取dataframe的行方法详解

    今天小编就为大家分享一篇对pandas通过索引提取dataframe的行方法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-02-02

最新评论