Python实现数据可视化案例分析

 更新时间:2022年08月03日 15:42:33   作者:biyezuopinvip  
这篇文章主要介绍了Python实现数据可视化案例分析,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下

1. 问题描述

对右图进行修改:

  • 请更换图形的风格
  • 请将 x 轴的数据改为-10 到 10
  • 请自行构造一个 y 值的函数
  • 将直方图上的数字,位置改到柱形图的内部垂直居中的位置
  • 对成绩数据 data1402.csv 进行分段统计:每 5 分作为一个分数段,展示出每个分数段的人数直方图。
  • 自行创建出 10 个学生的 3 个学期排名数据,并通过直方图进行对比展示。
  • 线图
    • 把这个图像做一些调整,要求出现 5 个完整的波峰。
    • 调大 cos 波形的幅度
    • 调大 sin 波形的频率
  • 用线图展示北京空气质量数据

展示 10-15 年 PM 指数月平均数据的变化情况,一幅图中有 6 条曲线,每年 1 条曲线。

2. 实验环境

Microsoft Windows 10 版本18363

​ PyCharm 2020.2.1 (Community Edition)

​ Python 3.8(Scrapy 2.4.0 + numpy 1.19.4 + pandas 1.1.4 + matplotlib 3.3.3)

3. 实验步骤及结果

对右图进行修改:

  • 请更换图形的风格
  • 请将 x 轴的数据改为-10 到 10
  • 请自行构造一个 y 值的函数
  • 将直方图上的数字,位置改到柱形图的内部垂直居中的位置
from matplotlib import pyplot as plt
import numpy as np

fig, ax = plt.subplots()
plt.style.use('classic')
plt.title("square numbers")

ax.set_xlim(-11, 11)
ax.set_ylim(0, 100)

x = np.array(range(-10, 11))
y = x * x
rect1 = plt.bar(x, y)
for r in rect1:
    ax.text(r.get_x(), r.get_height() / 2, r.get_height())
plt.show()

如图使用 classic 风格,x 轴数据为[-10, 10]的整数,构造的函数为 y=x2,显示位置并将其将数值改到了柱形图内部垂直居中的位置。

对成绩数据 data1402.csv 进行分段统计:每 5 分作为一个分数段,展示出每个分数段的人数直方图。

from matplotlib import pyplot as plt
import numpy as np
import pandas as pd

df = pd.read_csv("./data1402.csv", encoding='utf-8', dtype=str)
df = pd.DataFrame(df, columns=['score'], dtype=np.float)
section = np.array(range(0, 105, 5))
result = pd.cut(df['score'], section)
count = pd.value_counts(result, sort=False)
fig, ax = plt.subplots()
plt.style.use('classic')
ax.set_xlim(0, 100)
rect1 = plt.bar(np.arange(2.5, 100, 5), count, width=5)
for r in rect1:
    ax.text(r.get_x(), r.get_height(), r.get_height())
plt.show()

自行创建出 10 个学生的 3 个学期排名数据,并通过直方图进行对比展示。

import random

semester1 = np.arange(1, 11)
semester2 = np.arange(1, 11)
semester3 = np.arange(1, 11)

random.shuffle(semester1)
random.shuffle(semester2)
random.shuffle(semester3)
df = pd.DataFrame({'semester1':semester1, 'semester2':semester2, 'semester3':semester3})
print(df)
df.to_csv("data1403.csv", encoding="utf-8")

使用如上代码创建出随机的排名数据。

df = pd.read_csv("./data1403.csv", encoding='utf-8', dtype=str)
df = pd.DataFrame(df, columns=['semester1', 'semester2', 'semester3'], dtype=np.int)

df['total'] = (df['semester1'] + df['semester2'] + df['semester3']) / 3
df = df.sort_values('total')

fig, ax = plt.subplots()
plt.style.use('classic')
plt.title('RANK')
width = 0.2
x = np.array(range(0, 10))
rect1 = ax.bar(x-2*width, df['semester1'], width=width, label='semester1')
rect2 = ax.bar(x-width, df['semester2'], width=width, label='semester2')
rect3 = ax.bar(x, df['semester3'], width=width, label='semester3')
for r in rect1:
    ax.text(r.get_x(), r.get_height(), r.get_height())
for r in rect2:
    ax.text(r.get_x(), r.get_height(), r.get_height())
for r in rect3:
    ax.text(r.get_x(), r.get_height(), r.get_height())
plt.legend(ncol=1)
plt.show()

如上代码绘图:

线图 :

  • 把这个图像做一些调整,要求出现 5 个完整的波峰。
  • 调大 cos 波形的幅度
  • 调大 sin 波形的频率
import numpy as np
from matplotlib import pyplot as plt

x = np.linspace(-5 * np.pi, 5 * np.pi, 500)
y1 = 3 * np.cos(x)
y2 = np.sin(4*x)

fig, ax = plt.subplots()
plt.style.use('classic')
ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
ax.spines['bottom'].set_position(('data',0))
ax.xaxis.set_ticks_position('bottom')
ax.spines['left'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
plt.plot(x, y1, color='blue', linestyle='-', label='y=3cosx')
plt.plot(x, y2, color='red', linestyle='-', label='y=sin3x')
plt.legend()
plt.show()

用线图展示北京空气质量数据

展示 10-15 年 PM 指数月平均数据的变化情况,一幅图中有 6 条曲线,每年 1 条曲线。

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
orig_df = pd.read_csv("./BeijingPM20100101_20151231.csv", encoding='utf-8', dtype=str)
orig_df = pd.DataFrame(orig_df, columns=['year', 'month', 'PM_US Post'])
df = orig_df.dropna(0, how='any')
df['month'] = df['month'].astype(int)
df['year'] = df['year'].astype(int)
df['PM_US Post'] = df['PM_US Post'].astype(int)
df.reset_index(drop=True, inplace=True)
num = len(df)
section = np.arange(1, 13)
record = 0
fig, ax = plt.subplots()
plt.style.use('classic')
plt.title("2010-2015 Beijing average PM2.5(from PM_US Post) per month")

for nowyear in range(2010, 2016):
    i = record
    result = [0 for i in range(13)]
    nowsum = 0
    cntday = 0
    nowmonth = 1
    while i < num:
        if df['month'][i] == nowmonth:
            cntday = cntday + 1
            nowsum = nowsum + df['PM_US Post'][i]
        else:
            if df['year'][i] != nowyear:
                record = i
                result[nowmonth] = nowsum / cntday
                break
            result[nowmonth] = nowsum / cntday
            cntday = 1
            nowsum = df['PM_US Post'][i]
            nowmonth = df['month'][i]
        i = i + 1
    result = result[1:]
    #
    x = np.array(range(1, 13))
    plt.plot(x, result, linestyle='-', label=str(nowyear))
plt.legend()
plt.show()

到此这篇关于Python实现数据可视化案例分析的文章就介绍到这了,更多相关Python数据可视化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python3+PyQt5实现自定义分数滑块部件

    python3+PyQt5实现自定义分数滑块部件

    这篇文章主要为大家详细介绍了python3+PyQt5实现自定义分数滑块部件,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-04-04
  • Python 启动时选择32位 或64位版的操作

    Python 启动时选择32位 或64位版的操作

    这篇文章主要介绍了Python 启动时选择32位 或64位版的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • django channels使用和配置及实现群聊

    django channels使用和配置及实现群聊

    本文主要介绍了django channels使用和配置及实现群聊,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-05-05
  • 分享一个简单的python读写文件脚本

    分享一个简单的python读写文件脚本

    这篇文章主要介绍了分享一个简单的python读写文件脚本,具有一定参考价值,需要的朋友可以了解下。
    2017-11-11
  • Python进阶-函数默认参数(详解)

    Python进阶-函数默认参数(详解)

    下面小编就为大家带来一篇Python进阶-函数默认参数(详解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-05-05
  • python 布尔操作实现代码

    python 布尔操作实现代码

    python布尔操作也是我们经常写代码需要用到的,首先我们需要明白在python里面,哪些被解释器当做真,哪些当做假
    2013-03-03
  • python中编写函数并调用的知识点总结

    python中编写函数并调用的知识点总结

    在本篇文章里小编给各位整理的是一篇关于python中编写函数并调用的知识点总结内容,有兴趣的朋友们可以学习下。
    2021-01-01
  • pandas中iloc函数的具体实现

    pandas中iloc函数的具体实现

    iloc是Pandas中用于基于整数位置进行索引和切片的方法,本文主要介绍了pandas中iloc函数的具体实现,具有一定的参考价值,感兴趣的可以了解一下
    2024-06-06
  • python中nan与inf转为特定数字方法示例

    python中nan与inf转为特定数字方法示例

    这篇文章主要给大家介绍了将python中nan与inf转为特定数字的方法,文中给出了详细的示例代码和运行结果,对大家的理解和学习具有一定的参考学习价值,需要的朋友们下面来一起看看吧。
    2017-05-05
  • python的dict,set,list,tuple应用详解

    python的dict,set,list,tuple应用详解

    这篇文章主要介绍了python的dict,set,list,tuple应用详解,需要的朋友可以参考下
    2014-07-07

最新评论