C++数据结构之红黑树的实现

 更新时间:2022年08月07日 10:19:25   作者:卖寂寞的小男孩  
红黑树在表意上就是一棵每个节点带有颜色的二叉搜索树,并通过对节点颜色的控制,使该二叉搜索树达到尽量平衡的状态。本文主要为大家介绍了C++中红黑树的原理及实现,需要的可以参考一下

一、什么是红黑树

红黑树在表意上就是一棵每个节点带有颜色的二叉搜索树,并通过对节点颜色的控制,使该二叉搜索树达到尽量平衡的状态。所谓尽量平衡的状态就是:红黑树确保没有一条路径比其他路径长两倍。

和AVL树不同的是,AVL树是一棵平衡树,而红黑树可能平衡也可能不平衡(因为是尽量平衡的状态)

二、红黑树的约定

要实现一棵红黑树,即要红黑树确保没有一条路径比其他路径长两倍。通过对节点颜色的约定来实现这一目标。

1.根节点是黑色的。

2.如果一个节点是红色的,则它的两个孩子都是黑色的。

3.对于每个节点,从该节点到其所有后代节点的简单路径上,均包含相同数量的黑色节点。

实现了这三条颜色规则的二叉搜索树,即也实现了没有一条路径比其他路径长两倍,即实现了一棵红黑树。

三、红黑树vsAVL

1、调整平衡的实现机制不同

红黑树根据节点颜色(同一父节点出发到叶子节点,所有路径上的黑色节点数目一样),一些约定和旋转实现。

AVL根据树的平衡因子(所有节点的左右子树高度差的绝对值不超过1)和旋转决定。

2、红黑树的插入效率更高

红黑树是用非严格的平衡来换取增删节点时候旋转次数的降低,任何不平衡都会在三次旋转之内解决,红黑树并不追求“完全平衡”,它只要求部分地达到平衡要求,降低了对旋转的要求,从而提高了性能

而AVL是严格平衡树(高度平衡的二叉搜索树),因此在增加或者删除节点的时候,根据不同情况,旋转的次数比红黑树要多。所以红黑树的插入效率更高

3、AVL查找效率高

如果你的应用中,查询的次数远远大于插入和删除,那么选择AVL树,如果查询和插入删除次数几乎差不多,应选择红黑树。即,有时仅为了排序(建立-遍历-删除),不查找或查找次数很少,R-B树合算一些。

四、红黑树的实现

实现一棵红黑树,本质是实现它的插入函数,使插入函数可以实现红黑树的颜色约定,它的实现分为两步,即先找到插入的位置,再控制平衡。插入函数返回值设计为bool,插入成功返回true,失败返回false。控制平衡时,需要关注四个节点,即新插入的节点,它的父节点,它的叔叔节点,它的祖父节点。

1.找到插入的位置

当为第一个节点的时候,颜色设为黑,直接插入。

当插入的不是第一个节点时,颜色设为红,需要根据二叉搜索树的性质找到插入位置。并实现三叉链。

        if (_root == nullptr)
        {
            _root = new Node(kv);
            _root->_col = Black;
            return true;
        }
        Node* parent = nullptr;
        Node* cur = _root;
        while (cur)
        {
            if (cur->_kv.first < kv.first)
            {
                parent = cur;
                cur = cur->_right;
            }
            else if (cur->_kv.first > kv.first)
            {
                parent = cur;
                cur = cur->_left;
            }
            else
            {
                return false;
            }
        }
        cur = new Node(kv);
        cur->_col= Red;
        if (parent->_kv.first < kv.first)
        {
            parent->_right = cur;
            cur->_parent = parent;
        }
        else
        {
            parent->_left = cur;
            cur->_parent = parent;
        }

2.控制平衡

(1)当父节点为黑

当父节点为黑的时候,由于插入的子节点的颜色为红,对三个约定没有任何影响,因此不需要调整平衡。

(2)判断父节点在祖父节点的位置

通过判断父节点在祖父节点的位置,来定义叔叔节点的位置,以及之后的旋转方向的判断。

while (parent && parent->_col == Red)
{
Node* grandfather = parent->_parent;
if (parent == grandfather->_left)
{
   Node* uncle = grandfather->_right;
   //三种情况的处理
}
else
{
   Node* uncle = grandfather->_left;
   //三种情况的处理
}

首先需要使用大循环,这个循环是为情况1而准备的,情况2和3直接跳出循环即可,因为只有情况1对上层循环有影响。
下面我们以父节点在祖父节点的左侧为例,右侧同理。

(3)叔叔节点存在且为红

解决方案:将父节点和叔叔节点设为黑,将祖父节点设为红。然后将祖父节点作为新节点继续向上平衡。如果祖父节点是根节点,那么需要再将其置为黑。

注意,这种情况和其他情况不同的是,需要将祖父节点作为新插入的节点继续向上遍历,这说明需要一个循环。而其他类型的情况直接break跳出这个循环即可。

//第一种情况
if (uncle && uncle->_col == Red)
{
    parent->_col = uncle->_col = Black;
    grandfather->_col = Red;
    cur = grandfather;
    parent = cur->_parent;
}

这种情况只需要控制颜色即可,但是要继续向上循环。

(4)父节点为红,叔叔不存在或存在且为黑,新插入的节点在父节点左侧

解决方案:对祖父节点右旋操作,并将祖父节点置为红,父节点置为黑。

关于旋转的细节,我在AVL树中有详细的解释:C++手撕AVL树

//第二种情况,右单旋
if (cur == parent->_left)
{
RotateR(grandfather);
parent->_col = Black;
grandfather->_col = Red;
}

(5)父节点为红,叔叔不存在或存在且为黑,新插入的节点在父节点右侧

解决方案:进行双旋,即对父节点进行左单旋,祖父节点进行右单旋。将子节点置为黑,将祖父节点置为红。

else
{
RotateL(parent);
RotateR(grandfather);
cur->_col = Black;
grandfather->_col = Red;
}

(6)最后置黑

每一次插入都对根节点置为黑操作,因为第一种情况可能导致根节点不是黑。同时对根节点置黑也并不违反三条规定。

3.测试代码

当我们处理完父节点在祖父节点的左侧后,处理父节点在祖父节点的右侧。

全部处理之后,我们的插入代码就完成了,接下来要对整个树进行测试,即对三个约定来进行测试:

1.当根节点为红时,返回false。

2.判断一个节点和其父节点的颜色是否都为红,若都为红返回false。

3.以最左的一条路径上的根节点数量为基准,通过递归遍历每一条路径上的根节点的数量,当每条路径遍历节点到空时,将两者进行比较,如果最终结果不相等则返回false。

    bool IsBalance()
    {
        if (_root && _root->_col == Red)
        {
            cout << "根节点不是黑色的" << endl;
            return false;
        }
        int banchmark = 0;
        //以最右边一条路径为基准
        Node* left = _root;
        while (left)
        {
            if (left->_col == Black)
            {
                ++banchmark;
            }
            left = left->_left;
        }
        int blackNum = 0;
        return _IsBalance(_root, banchmark, blackNum);
    }
    bool _IsBalance(Node* root, int banchmark, int blackNum)
    {
        if (root == nullptr)
        {
            if (banchmark != blackNum)
            {
                cout << "黑色根节点数目不相等" << endl;
                return false;
            }
            return true;
        }
        if (root->_col == Red && root->_parent->_col == Red)
        {
            cout << "出现连续的红色节点" << endl;
            return false;
        }
        if (root->_col == Black)
        {
            ++blackNum;
        }
        return _IsBalance(root->_left, banchmark, blackNum) && _IsBalance(root->_right, banchmark, blackNum);
    }

五、完整代码

1.test.c

#define _CRT_SECURE_NO_WARNINGS 1
#include"RBtree.h"
#include<vector>
int main()
{
    RBTree<int, int> t;
    vector<int> v;
    srand(time(0));
    int N = 100000;
    int count = 0;
    for (int i = 0; i < N; i++)
    {
        v.push_back(rand());
    }
    for (auto e : v)
    {
        pair<int,int> kv(e, e);
        t.insert(kv);
        if (t.IsBalance())
        {
            cout << "insert" << e << endl;
            count++;
            cout << count << endl;
        }
        else
        {
            cout << e << "插入失败" << endl;
            cout << "不是平衡的" << endl;
            break;
        }
    }
}

2.RBTree.h

#pragma once
#include<iostream>
#include<assert.h>
using namespace std;
enum Color
{
    Red,
    Black
};
template<class K,class V>
struct RBTreeNode
{
    RBTreeNode<K, V>* _left;
    RBTreeNode<K, V>* _right;
    RBTreeNode<K, V>* _parent;
    pair<K, V> _kv;
    Color _col;
    RBTreeNode(pair<K, V>& kv)
        :_left(nullptr)
        , _right(nullptr)
        , _parent(nullptr)
        , _col(Red)
        , _kv(kv)
    {}
};
template<class K,class V>
struct RBTree
{
    typedef RBTreeNode<K, V> Node;
private:
    Node* _root;
public:
    RBTree()
        :_root(nullptr)
    {}
    bool IsBalance()
    {
        if (_root && _root->_col == Red)
        {
            cout << "根节点不是黑色的" << endl;
            return false;
        }
        int banchmark = 0;
        //以最右边一条路径为基准
        Node* left = _root;
        while (left)
        {
            if (left->_col == Black)
            {
                ++banchmark;
            }
            left = left->_left;
        }
        int blackNum = 0;
        return _IsBalance(_root, banchmark, blackNum);
    }
    bool _IsBalance(Node* root, int banchmark, int blackNum)
    {
        if (root == nullptr)
        {
            if (banchmark != blackNum)
            {
                cout << "黑色根节点数目不相等" << endl;
                return false;
            }
            return true;
        }
        if (root->_col == Red && root->_parent->_col == Red)
        {
            cout << "出现连续的红色节点" << endl;
            return false;
        }
        if (root->_col == Black)
        {
            ++blackNum;
        }
        return _IsBalance(root->_left, banchmark, blackNum) && _IsBalance(root->_right, banchmark, blackNum);
    }
    //右单旋
    void RotateR(Node* parent)
    {
        Node* cur = parent->_left;
        Node* curL = cur->_left;
        Node* curR = cur->_right;
        Node* parentParent = parent->_parent;
        parent->_left = curR;
        if (curR)
            curR->_parent = parent;
        cur->_right = parent;
        parent->_parent = cur;
        if (parent == _root)
        {
            _root = cur;
            _root->_parent = nullptr;
        }
        else
        {
            if (parentParent->_left == parent)
            {
                parentParent->_left = cur;
                cur->_parent = parentParent;
            }
            else if (parentParent->_right == parent)
            {
                parentParent->_right = cur;
                cur->_parent = parentParent;
            }
            else
            {
                assert(false);
            }
        }
    }
    //左单旋
    void RotateL(Node* parent)
    {
        Node* cur = parent->_right;
        Node* curL = cur->_left;
        Node* parentParent = parent->_parent;
        parent->_right = curL;
        if (curL)
            curL->_parent = parent;
        cur->_left = parent;
        parent->_parent = cur;
        if (parent == _root)
        {
            _root = cur;
            _root->_parent = nullptr;
        }
        else
        {
            if (parentParent->_left == parent)
            {
                parentParent->_left = cur;
                cur->_parent = parentParent;
            }
            else if (parentParent->_right == parent)
            {
                parentParent->_right = cur;
                cur->_parent = parentParent;
            }
            else
            {
                assert(false);
            }
        }
    }
    bool insert(pair<K, V>& kv)
    {
        if (_root == nullptr)
        {
            _root = new Node(kv);
            _root->_col = Black;
            return true;
        }
        Node* parent = nullptr;
        Node* cur = _root;
        while (cur)
        {
            if (cur->_kv.first < kv.first)
            {
                parent = cur;
                cur = cur->_right;
            }
            else if (cur->_kv.first > kv.first)
            {
                parent = cur;
                cur = cur->_left;
            }
            else
            {
                return false;
            }
        }
        cur = new Node(kv);
        cur->_col= Red;
        if (parent->_kv.first < kv.first)
        {
            parent->_right = cur;
            cur->_parent = parent;
        }
        else
        {
            parent->_left = cur;
            cur->_parent = parent;
        }
        while (parent && parent->_col == Red)
        {
            Node* grandfather = parent->_parent;
            if (parent == grandfather->_left)
            {
                Node* uncle = grandfather->_right;
                //第一种情况
                if (uncle && uncle->_col == Red)
                {
                    parent->_col = uncle->_col = Black;
                    grandfather->_col = Red;
                    cur = grandfather;
                    parent = cur->_parent;
                }
                else
                {
                    //第二种情况,右单旋
                    if (cur == parent->_left)
                    {
                        RotateR(grandfather);
                        parent->_col = Black;
                        grandfather->_col = Red;
                    }
                    //第三种情况,左右双旋
                    else
                    {
                        RotateL(parent);
                        RotateR(grandfather);
                        cur->_col = Black;
                        grandfather->_col = Red;
                    }
                    break;
                }
                _root->_col = Black;
            }
            else
            {
                Node* uncle = grandfather->_left;
                //第一种情况
                if (uncle && uncle->_col == Red)
                {
                    parent->_col = uncle->_col = Black;
                    grandfather->_col = Red;
                    cur = grandfather;
                    parent = cur->_parent;
                }
                else
                {
                    //第二种情况,左单旋
                    if (cur == parent->_right)
                    {
                        RotateL(grandfather);
                        parent->_col = Black;
                        grandfather->_col = Red;
                    }
                    //第三种情况,右左双旋
                    else
                    {
                        RotateR(parent);
                        RotateL(grandfather);
                        cur->_col = Black;
                        grandfather->_col = Red;
                    }
                    break;
                }
                _root->_col = Black;
            }
        }
    }
};

到此这篇关于C++数据结构之红黑树的实现的文章就介绍到这了,更多相关C++红黑树内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • C语言进阶:指针的进阶(1)

    C语言进阶:指针的进阶(1)

    这篇文章主要介绍了C语言指针详解及用法示例,介绍了其相关概念,然后分享了几种用法,具有一定参考价值。需要的朋友可以了解下
    2021-09-09
  • opencv平均背景法详解

    opencv平均背景法详解

    这篇文章主要为大家详细介绍了opencv平均背景法,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-03-03
  • 基于C语言实现三子棋小游戏

    基于C语言实现三子棋小游戏

    这篇文章主要为大家详细介绍了基于C语言实现三子棋小游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-11-11
  • C/C++中带空格字符串的输入讲解

    C/C++中带空格字符串的输入讲解

    这篇文章主要给大家介绍了关于如何解决C++中带空格字符串的输入问题,文中通过示例代码介绍的非常详细,需要的朋友可以参考借鉴,下面来一起看看吧
    2021-09-09
  • C++内存管理之简易内存池的实现

    C++内存管理之简易内存池的实现

    大家好,本篇文章主要讲的是C++内存管理之简易内存池的实现,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2021-12-12
  • C++面试八股文之左值与右值

    C++面试八股文之左值与右值

    简单来说,左值就是可以使用&符号取地址的值,而右值一般不可以使用&符号取地址,这篇文章主要来和大家讲讲面试中左值与右值常考的知识点,需要的可以参考一下
    2023-06-06
  • Qt重写QTreeView自绘实现酷炫样式

    Qt重写QTreeView自绘实现酷炫样式

    QTreeView,顾名思义,就是一种树形的控件,在我们需要做类似于文件列表的视图时,是一个不错的选择,下面我们就来看看qt如何重写QTreeView实现酷炫样式,感兴趣的可以了解一下
    2023-08-08
  • 解析C语言基于UDP协议进行Socket编程的要点

    解析C语言基于UDP协议进行Socket编程的要点

    这篇文章主要介绍了C语言通过UDP协议进行Socket编程的要点,文中还提到了相关ARP与ICMP协议的作用,需要的朋友可以参考下
    2016-02-02
  • MongoDB C 驱动程序安装(libmongoc) 和 BSON 库(libbson)方法

    MongoDB C 驱动程序安装(libmongoc) 和 BSON 库(libbson)方法

    这篇文章主要介绍了安装 MongoDB C 驱动程序 (libmongoc) 和 BSON 库 (libbson),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-09-09
  • C++中cin的返回值问题

    C++中cin的返回值问题

    这篇文章主要介绍了C++中cin的返回值问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07

最新评论