pandas数据类型之Series的具体使用

 更新时间:2022年08月07日 15:30:19   作者:weixin_48668114  
本文主要介绍了pandas数据类型之Series的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

pandas中包含了DataFrame和Series数据类型,分别表示二维数据结构和一维数据结构。
简单的可以理解为Series为excel表的某一行或者列,DataFrame是多行多列的区域。

Series类型

  • 当我们说excel中某一个列段的数据时(单独的一列), 说第几个数据,我们一般会说,是第几行的数据,那么,可见虽然它是一个一维的数据,但是还有索引的。
  • Series数据的默认索引为0,1,2,3,4,5…,也称位置索引或隐式索引。自定义索引后,称为标签索引,可以用位置索引和标签访问Series。

Series的三种创建方式

通过数组创建Series

import pandas as pd
import numpy as np
s1 = pd.Series([1,2,3,'tom',True])
s2 = pd.Series(range(0, 10, 1))
print(s1)
print(s2)
print(type(s1), type(s2))

创建指定索引列的Series

索引为数组

s1 = pd.Series([1,2], index=["a", "b"])
s2 = pd.Series(range(10,15,1), index=list('ngjur'))
s3 = pd.Series(range(100,110,2), index=range(4,9,1))
print(s1)
print(s2)
print(s3)
print(s1["a"], s1[1])    #位置索引从0开始
print(s2["r"], s2[-2])   #位置索引从0开始,可以用和列表同样的索引访问方式,-1表示最后一个元素
print(s3[4])    #当定义的索引为数字时,会覆盖之前位置索引的方式,也就是说s3[0]到s3[3],s3[-1]将不能再访问。

a    1
b    2
dtype: int64
n    10
g    11
j    12
u    13
r    14
dtype: int64
4    100
5    102
6    104
7    106
8    108
dtype: int64
1 2
14 13
100

使用字典创建

key为标签索引,value为series的每个元素的值

s1 = pd.Series({'tom':'001', 'jack':'002'})
print(s1)

tom     001
jack    002
dtype: object

标量创建Series对象

如果data是标量值,则必须提供索引

s1 = pd.Series(5, [0, 1, 2, "a"])
print(s1[[1, "a"]])

1    5
a    5
dtype: int64

Series的常见操作

Series的值访问

series_name[],[]内可以为单个位置索引或者标签索引,也可以为位置切片或者标签切片,也可以为位置索引列表或者标签索引列表

s1 = pd.Series({'tom':'001', 'jack':'002', "Jim":"003"})
s2 = s1[["tom", "jack"]]    #使用标签索引列表
s3 = s1[0:3]  # 使用位置切片
s4 = s1["tom":"Jim"]    #使用标签切片
s5 = s1[[0,1]]
print("s1-----\n", s1["tom"], type(s1[1]))  
print("s2-----\n", s2, type(s2))  #使用标签索引列表
print("s3-----\n", s3, type(s3))  #使用位置切片
print("s4-----\n", s4, type(s4))  #使用标签切片
print("s5-----\n", s5, type(s5))  #使用位置索引列表

s1-----
 001 <class 'str'>
s2-----
 tom     001
jack    002
dtype: object <class 'pandas.core.series.Series'>
s3-----
 tom     001
jack    002
Jim     003
dtype: object <class 'pandas.core.series.Series'>
s4-----
 tom     001
jack    002
Jim     003
dtype: object <class 'pandas.core.series.Series'>
s5-----
 tom     001
jack    002
dtype: object <class 'pandas.core.series.Series'>

访问整个series

  • series_name.values属性
  • 返回numpy.ndarray类型
s1 = pd.Series({'tom':'001', 'jack':'002', "Jim":"003"})
s2 = s1.values
print("s2-----\n", s2, type(s2))  
s3 = pd.Series({'tom':90, 'jack':40, "Jim":100})

s2-----
 ['001' '002' '003'] <class 'numpy.ndarray'>
s2-----
 [ 90  40 100] <class 'numpy.ndarray'>

获取索引列

series_name.index
s1 = pd.Series(['tom', 'jack', "Jim"], [90, 100, 60])
print("s1-----\n", s1, type(s1))
s1_index = s1.index
print("s1_index-----\n", s1_index, type(s1_index))
print("s1_name:", s1.name)

s1-----
 90      tom
100    jack
60      Jim
dtype: object <class 'pandas.core.series.Series'>
s1_index-----
 Int64Index([90, 100, 60], dtype='int64') <class 'pandas.core.indexes.numeric.Int64Index'>
s1_name----- None

设置名称

如果 Series 用于生成 DataFrame,则 Series 的名称将成为其索引或列名称

s1 = pd.Series(np.arange(5), name='ABC',index=['a','b','c','d','e'])
print(s1)

a    0
b    1
c    2
d    3
e    4
Name: ABC, dtype: int32

Series数据编辑

Series数据删除

使用series_name.drop(),指明index,可以为标签索引,或者多个标签索引多个组成的列表,不能为位置索引,或者切片

Series数据删除

drop方法

s1 = pd.Series(np.arange(5), name='A',index=['a','b','c','d','e'])
print(s1)
# 单个值删除,指明标签索引
s1.drop('c',inplace=False)    #inplace为False不改变原s1的内容
print("删除单个值,不改变s1:\n",s1)
# 多个值删除,指明标签索引列表
s1.drop(['c','e'],inplace=False)

a    0
b    1
c    2
d    3
e    4
Name: A, dtype: int32
删除单个值,不改变s1:
 a    0
b    1
c    2
d    3
e    4
Name: A, dtype: int32

a    0
b    1
d    3
Name: A, dtype: int32

# multiindex值的删除
midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
                             ['speed', 'weight', 'length']],
                     codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
                            [0, 1, 2, 0, 1, 2, 0, 1, 2]])
s1 = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3],
              index=midx)
print(s1)
s1.drop(labels='weight', level=1)

lama    speed      45.0
        weight    200.0
        length      1.2
cow     speed      30.0
        weight    250.0
        length      1.5
falcon  speed     320.0
        weight      1.0
        length      0.3
dtype: float64


lama    speed      45.0
        length      1.2
cow     speed      30.0
        length      1.5
falcon  speed     320.0
        length      0.3
dtype: float64

pop方法

pop(x), 指定要pop的标签索引

s1 = pd.Series([1, 2, 3], index=["a", "b", "c"])
s1.pop("a")
print(s1)

b    2
c    3
dtype: int64

del方法

del s1[x], 指定要删除的吗标签索引
s1 = pd.Series([1, 2, 3], index=["a", "b", "c"])
del s1["a"]
print(s1)

b    2
c    3
dtype: int64

Series数据添加

类似于字典中元素的添加方式

s1 = pd.Series([1, 2, 3], index=["a", "b", "c"])
s1["d"] = 4
print(s1)

a    1
b    2
c    3
d    4
dtype: int64

append方法

  • Pandas Series.append()函数用于连接两个或多个系列对象, 原对象并不改变, 这个和列表不同。
  • Series.append(to_append, ignore_index=False, verify_integrity=False)
    • to_append: 系列或系列列表/元组
    • ignore_indexd: 如果为True,则不要使用索引标签果为True,则在创建具有重复项的索引时引发异常
s1 =pd.Series(["北京", "上海", "台湾", "香港"])
index_list =["a", "b", "c", "d"]
s1.index = index_list
print("s1-----------\n", s1)
s2 = pd.Series({"e": "广州", "f": "深圳"})
print("s2-----------\n", s2)
s3 = s1.append(s2)
print("s3-----------\n", s3)
print(s1)
s4 = s1.append(s2, ignore_index=True)
print("s4-----------\n", s4)

s1-----------
 a    北京
b    上海
c    台湾
d    香港
dtype: object
s2-----------
 e    广州
f    深圳
dtype: object
s3-----------
 a    北京
b    上海
c    台湾
d    香港
e    广州
f    深圳
dtype: object
a    北京
b    上海
c    台湾
d    香港
dtype: object
s4-----------
 0    北京
1    上海
2    台湾
3    香港
4    广州
5    深圳
dtype: object

到此这篇关于pandas数据类型之Series的具体使用的文章就介绍到这了,更多相关pandas Series内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 一文带你了解Python中pymysql的使用

    一文带你了解Python中pymysql的使用

    pymysql就是联通mysql实现python窗口与mysql数据库交互的库,十分方便操作,这篇文章将详细说明如何掌握并使用该库,感兴趣的可以了解一下
    2023-02-02
  • Python实现遍历目录的两张方法总结

    Python实现遍历目录的两张方法总结

    我们有时想直接查看文件夹里的所有文件,但使用正常的方法太麻烦了,于是本文开发出了两个python程序,可以遍历目录,有需要的小伙伴可以参考下
    2024-02-02
  • django 微信网页授权登陆的实现

    django 微信网页授权登陆的实现

    这篇文章主要介绍了django 微信网页授权登陆的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • Python百度指数获取脚本下载并保存

    Python百度指数获取脚本下载并保存

    这篇文章主要介绍了Python百度指数获取脚本下载并保存,基于原有的可以对百度指数进行爬虫的脚本做一个可直接返回pd.DataFrame的数据框的类加上可视化代码完成,需要的朋友可以参考一下
    2022-06-06
  • 解决Scrapy安装错误:Microsoft Visual C++ 14.0 is required...

    解决Scrapy安装错误:Microsoft Visual C++ 14.0 is required...

    下面小编就为大家带来一篇解决Scrapy安装错误:Microsoft Visual C++ 14.0 is required...的问题。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-10-10
  • PYQT5 vscode联合操作qtdesigner的方法

    PYQT5 vscode联合操作qtdesigner的方法

    这篇文章主要介绍了PYQT5 vscode联合操作qtdesigner的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-03-03
  • Python pandas索引的设置和修改方法

    Python pandas索引的设置和修改方法

    索引的作用相当于图书的目录,可以根据目录中的页码快速找到所需的内容,下面这篇文章主要给大家介绍了关于Python pandas索引的设置和修改的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-06-06
  • python实现通讯录管理系统

    python实现通讯录管理系统

    这篇文章主要为大家详细介绍了python实现通讯录管理系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-05-05
  • python如何爬取个性签名

    python如何爬取个性签名

    这篇文章主要为大家详细介绍了pythonx抓取个性签名的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-06-06
  • Python3 jupyter notebook 服务器搭建过程

    Python3 jupyter notebook 服务器搭建过程

    这篇文章主要介绍了Python3 jupyter notebook 服务器搭建过程,非常不错,具有一定的参考借鉴价值,需要的朋友参考下吧
    2018-11-11

最新评论