详解opencv去除背景算法的方法比较

 更新时间:2022年08月08日 10:11:21   作者:Stark_Jarvis  
本文主要介绍了opencv去除背景算法的方法比较,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

最近做opencv项目时,使用肤色分割的方法检测目标物体时,背景带来的干扰非常让人头痛。于是先将背景分割出去,将影响降低甚至消除。由于初次接触opencv,叙述不当的地方还请指正。

背景减除法

(以下文字原文来源于https://docs.opencv.org/3.4.7/d8/d38/tutorial_bgsegm_bg_subtraction.html
背景减除法是很多基于视觉的应用的一个主要预处理步骤。例如使用一个静止的摄像头拍摄进出房间的人数,或是交通摄像头捕获车辆信息等。在以上的例子中,首先你需要单独把人和交通工具提取出来。从技术上来说,你需要从静止的背景中提取移动前景目标。

通常情况下,我们的背景往往是未知的,因此需要通过一定的方法得到视频背景,然后用新的图像减去背景图片即可。

在opencv中提供了几种背景减除的方法:

(1)BackgroundSubtractorMOG

这是基于高斯混合模型的算法,混合模型表示了观测数据在总体中的概率分布,高斯分布即正态分布,正态分布如下图:
(图片来源于网络)

正态分布

而高斯混合模型就是使用高斯分布的混合模型,由于高斯分布具有良好的数学性质和计算性能,它的概率分布遵循高斯分布。

cv2.bgsegm.createBackgroundSubtractorMOG()使用时可以不用传入参数

import cv2

cap = cv2.VideoCapture(0)
fgbg = cv2.bgsegm.createBackgroundSubtractorMOG()
se = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))

while cap.isOpened():
    ret, frame = cap.read()
    
    # 用于计算前景掩模
    fgmask = fgbg.apply(frame)
    _, binary = cv2.threshold(fgmask, 215, 255, cv2.THRESH_BINARY)
    binary = cv2.morphologyEx(binary, cv2.MORPH_OPEN, se)
    res = cv2.bitwise_and(frame, frame, mask=binary)
    cv2.imshow("res", res)

    if cv2.waitKey(1000 // 12) & 0xff == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

运行结果:

(2)BackgroundSubtractorMOG2

它是改进的高斯混合模型,为各个参数设置了一些合适的值。

import cv2

cap = cv2.VideoCapture(0)
fgbg = cv2.createBackgroundSubtractorMOG2()
se = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))

while cap.isOpened():
    ret, frame = cap.read()
    fgmask = fgbg.apply(frame)
    _, binary = cv2.threshold(fgmask, 215, 255, cv2.THRESH_BINARY)
    binary = cv2.morphologyEx(binary, cv2.MORPH_OPEN, se)
    backImage = fgbg.getBackgroundImage()
    res = cv2.bitwise_and(frame, frame, mask=binary)
    cv2.imshow("backImage", backImage)
    cv2.imshow("res", res)
    
    if cv2.waitKey(1000 // 12) & 0xff == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

运行结果:

(3)BackgroundSubtractorGMG

GMG:Geometric Multigid,几何多重网格。它默认使用前120帧图像进行建模,使用贝叶斯推断方法判断可能的前景物体。

import cv2

cap = cv2.VideoCapture(0)
fgbg = cv2.bgsegm.createBackgroundSubtractorGMG()
se = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))

while cap.isOpened():
    ret, frame = cap.read()
    fgmask = fgbg.apply(frame)
    _, binary = cv2.threshold(fgmask, 215, 255, cv2.THRESH_BINARY)
    binary = cv2.morphologyEx(binary, cv2.MORPH_OPEN, se)
    res = cv2.bitwise_and(frame, frame, mask=binary)
    cv2.imshow("res", res)
    
    if cv2.waitKey(1000 // 12) & 0xff == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

运行结果:

以上这三种方法对于检测运动物体行之有效,但如果检测静态物体就不适合了。

帧差法

在可以确定背景时采用帧差法,此方法不仅可以用于动态目标检测,也能检测静态目标。
帧差法需要一个变量来检测当前是第几帧。即通过后面的帧减去第一帧得到所需前景。

import cv2

cap = cv2.VideoCapture(0)
frameNum = 0

while cap.isOpened():
    ret, frame = cap.read()
    frameNum += 1
    tmp = frame.copy()
    
    if frameNum == 1:
    	bgFrame = cv2.cvtColor(tmp, cv2.COLOR_BGR2GRAY)
    elif frameNum > 1:
    	foreFrame = cv2.cvtColor(tmp, cv2.COLOR_BGR2GRAY)
    	foreFrame = cv2.absdiff(foreFrame, bgFrame)
    	_, thresh = cv2.threshold(foreFrame, 30, 255, cv2.THRESH_BINARY)
    	gaussian = cv2.GaussianBlur(thresh, (3, 3), 0)
    	cv2.imshow('gaussian', foreFrame)

	if cv2.waitKey(1000 // 12) & 0xff == ord('q'):
    break

cap.release()
cv2.destroyAllWindows()

运行结果:

上述除了使用滤波的方法,也可以直接用cv2.subtract()进行图像减法运算。

 到此这篇关于详解opencv去除背景算法的方法比较的文章就介绍到这了,更多相关opencv去除背景算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python深度学习之使用Albumentations对图像做增强

    Python深度学习之使用Albumentations对图像做增强

    诸如RandomCrop和CenterCrop之类的某些增强功能可能会变换图像,使其不包含所有原始边界框. 本示例说明如何使用名为RandomSizedBBoxSafeCrop的变换来裁剪图像的一部分,但保留原始图像的所有边界框,需要的朋友可以参考下
    2021-05-05
  • Python用SSH连接到网络设备

    Python用SSH连接到网络设备

    这篇文章主要介绍了Python用SSH连接到网络设备,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2021-02-02
  • python使用requests设置读取超时时间

    python使用requests设置读取超时时间

    在Python中,使用requests库进行网络请求时,可以通过设置 timeout参数来指定读取超时时间,本文就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下
    2023-11-11
  • Python使用openpyxl批量处理数据

    Python使用openpyxl批量处理数据

    openpyxl 是一个用于处理 xlsx 格式Excel表格文件的第三方python库,其支持Excel表格绝大多数基本操作。本文给大家介绍Python使用openpyxl批量处理数据的操作方法,感兴趣的朋友一起看看吧
    2021-06-06
  • Python 权限控制模块 Casbin

    Python 权限控制模块 Casbin

    这篇文章主要介绍了Python 权限控制模块 Casbin,Casbin是一个强大的、高效的开源访问控制框架,其权限管理机制支持多种访问控制模型,更多相关内容感兴趣的朋友可以参考下面文章内容
    2022-06-06
  • 正确的使用Python临时文件

    正确的使用Python临时文件

    这篇文章主要介绍了正确的使用Python临时文件,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-03-03
  • Python捕获异常堆栈信息的几种方法(小结)

    Python捕获异常堆栈信息的几种方法(小结)

    这篇文章主要介绍了Python捕获异常堆栈信息的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-05-05
  • Python时间操作之pytz模块使用详解

    Python时间操作之pytz模块使用详解

    在学习Python过程中,我们已经了解了一些关于时间操作的库,如:Python内置库:time,datatime和第三方库:dateutil,pytz等。本文将详细讲讲pytz模块的使用,需要的可以参考一下
    2022-06-06
  • python创建多个logging日志文件的方法实现

    python创建多个logging日志文件的方法实现

    本文主要介绍了python创建多个logging日志文件的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-07-07
  • Python的“二维”字典 (two-dimension dictionary)定义与实现方法

    Python的“二维”字典 (two-dimension dictionary)定义与实现方法

    这篇文章主要介绍了Python的“二维”字典 (two-dimension dictionary)定义与实现方法,结合实例形式分析了Python模拟实现类似二维数组形式的二维字典功能,需要的朋友可以参考下
    2016-04-04

最新评论