numpy稀疏矩阵的实现

 更新时间:2022年08月09日 10:27:31   作者:IE06  
本文主要介绍了numpy稀疏矩阵的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1. coo存储方式

采用三元组(row, col, data)(或称为ijv format)的形式来存储矩阵中非零元素的信息。

coo_matrix的优点:有利于稀疏格式之间的快速转换(tobsr()、tocsr()、to_csc()、to_dia()、to_dok()、to_lil();允许重复项(格式转换的时候自动相加);能与CSR / CSC格式的快速转换

coo_matrix的缺点:不能直接进行算术运算,包括赋值

在这里插入图片描述

初始化方式:

coo_matrix(D), D代表密集矩阵

赋值:

>>> import numpy as np
>>> from scipy.sparse import coo_matrix

>>> _row  = np.array([0, 3, 1, 0])
>>> _col  = np.array([0, 3, 1, 2])
>>> _data = np.array([4, 5, 7, 9])
>>> coo = coo_matrix((_data, (_row, _col)), shape=(4, 4), dtype=np.int)
>>> coo.todense()  # 通过toarray方法转化成密集矩阵(numpy.matrix)
>>> coo.toarray()  # 通过toarray方法转化成密集矩阵(numpy.ndarray)
array([[4, 0, 9, 0],
       [0, 7, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 5]])

2. dok_matrix

​ dok_matrix,即Dictionary Of Keys based sparse matrix,是一种类似于coo matrix但又基于字典的稀疏矩阵存储方式,key由非零元素的的坐标值tuple(row, column)组成,value则代表数据值。dok matrix非常适合于增量构建稀疏矩阵,并一旦构建,就可以快速地转换为coo_matrix。

>>> import numpy as np
>>> from scipy.sparse import dok_matrix

>>> np.random.seed(10)
>>> matrix = random(3, 3, format='dok', density=0.4)
>>> matrix[1, 1] = 33
>>> matrix[2, 1] = 10
>>> matrix.toarray()
array([[ 0.        ,  0.        ,  0.        ],
       [ 0.        , 33.        ,  0.        ],
       [ 0.19806286, 10.        ,  0.22479665]])
>>> dict(matrix)
{(2, 0): 0.19806286475962398, (2, 1): 10.0, (2, 2): 0.22479664553084766, (1, 1): 33.0}

>>> isinstance(matrix, dict)
True

3. csr和csc存储方式

csr_matrix,全称Compressed Sparse Row matrix,即按行压缩的稀疏矩阵存储方式,由三个一维数组indptr, indices, data组成。这种格式要求矩阵元「按行顺序存储」,「每一行中的元素可以乱序存储」。那么对于每一行就只需要用一个指针表示该行元素的起始位置即可。indptr存储每一行数据元素的起始位置,indices这是存储每行中数据的列号,与data中的元素一一对应。
csr_matrix,是按列压缩,不再赘述

在这里插入图片描述

csr_matrix的优点:
高效的算术运算CSR + CSR,CSR * CSR等
高效的行切片
快速矩阵运算

csr_matrix的缺点:
列切片操作比较慢(考虑csc_matrix)
稀疏结构的转换比较慢(考虑lil_matrix或doc_matrix)

>>> import numpy as np
>>> from scipy.sparse import csr_matrix

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr = csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

4. lil_matrix

lil_matrix,即List of Lists format,又称为Row-based linked list sparse matrix。它使用两个嵌套列表存储稀疏矩阵:data保存每行中的非零元素的值,rows保存每行非零元素所在的列号(列号是顺序排序的)。
LIL matrix本身的设计是用来方便快捷构建稀疏矩阵实例,而算术运算、矩阵运算则转化成CSC、CSR格式再进行,构建大型的稀疏矩阵还是推荐使用COO格式。

在这里插入图片描述

5. dia_matrix

​ dia_matrix,全称Sparse matrix with DIAgonal storage,是一种对角线的存储方式。如下图中,将稀疏矩阵使用offsets和data两个矩阵来表示。

在这里插入图片描述

>>> data = np.arange(15).reshape(3, -1) + 1
>>> offsets = np.array([0, -3, 2])
>>> dia = sparse.dia_matrix((data, offsets), shape=(7, 5))
>>> dia.toarray()
array([[ 1,  0, 13,  0,  0],
       [ 0,  2,  0, 14,  0],
       [ 0,  0,  3,  0, 15],
       [ 6,  0,  0,  4,  0],
       [ 0,  7,  0,  0,  5],
       [ 0,  0,  8,  0,  0],
       [ 0,  0,  0,  9,  0]])

6. 稀疏矩阵经验

要有效地构造矩阵,请使用dok_matrix或lil_matrix
lil_matrix类支持基本切片和花式索引,其语法与NumPy Array类似;lil_matrix形式是基于row的,因此能够很高效的转为csr,但是转为csc效率相对较低。
要执行乘法或转置等操作,首先将矩阵转换为CSC或CSR格式,效率高
CSR格式特别适用于快速矩阵矢量产品
CSR,CSC和COO格式之间的所有转换都是线性复杂度。

到此这篇关于numpy稀疏矩阵的实现的文章就介绍到这了,更多相关numpy 稀疏矩阵内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • tensorflow中的数据类型dtype用法说明

    tensorflow中的数据类型dtype用法说明

    这篇文章主要介绍了tensorflow中的数据类型dtype用法说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-05-05
  • Numpy中np.max的用法及np.maximum区别

    Numpy中np.max的用法及np.maximum区别

    这篇文章主要介绍了Numpy中np.max的用法及np.maximum区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • 基于Python闭包及其作用域详解

    基于Python闭包及其作用域详解

    下面小编就为大家带来一篇基于Python闭包及其作用域详解。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-08-08
  • Python要如何实现列表排序的几种方法

    Python要如何实现列表排序的几种方法

    这篇文章主要介绍了Python要如何实现列表排序的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-02-02
  • Python爬虫实战演练之采集糗事百科段子数据

    Python爬虫实战演练之采集糗事百科段子数据

    读万卷书不如行万里路,只学书上的理论是远远不够的,只有在实战中才能获得能力的提升,本篇文章手把手带你用Python采集糗事百科段子的数据,大家可以在过程中查缺补漏,提升水平
    2021-10-10
  • Python如何实现自动发送邮件

    Python如何实现自动发送邮件

    对于一些每天需要发的报表或者是需要一次发送多份的报表,我们可以考虑借助Python来自动发送邮件。本文主要介绍了如何利用Python实现自动发送邮件,感兴趣的小伙伴可以了解一下
    2021-11-11
  • Python性能提升之延迟初始化

    Python性能提升之延迟初始化

    本文给大家分享的是在Python中使用延迟计算来提升性能的方法,非常的实用,有需要的小伙伴可以参考下
    2016-12-12
  • Python最长回文子串问题

    Python最长回文子串问题

    这篇文章主要介绍了Python最长回文子串问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11
  • 天翼开放平台免费短信验证码接口使用实例

    天翼开放平台免费短信验证码接口使用实例

    天翼开放平台提供了一个免费的短信验证码API,下面看看使用方法吧,我们用python开发接口
    2013-12-12
  • numpy如何删除矩阵中的部分数据numpy.delete

    numpy如何删除矩阵中的部分数据numpy.delete

    这篇文章主要介绍了numpy如何删除矩阵中的部分数据numpy.delete问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02

最新评论