Python+Scipy实现自定义任意的概率分布

 更新时间:2022年08月10日 15:40:34   作者:nejssd  
Scipy自带了多种常见的分布,如正态分布、均匀分布、二项分布、多项分布、伽马分布等等,还可以自定义任意的概率分布。本文将为大家介绍如何利用Scipy自定义任意的概率分布,感兴趣的可以了解下

Scipy自带了多种常见的分布,如正态分布、均匀分布、二项分布、多项分布、伽马分布等等,还可以自定义任意的概率分布。本文将介绍如何利用Scipy自定义任意的概率分布。

连续变量分布

考虑连续变量x满足如下概率密度分布函数:

其在实数域积分为1。我们可以通过scipy.stats中的rv_continuous类去实现这个分布,代码如下:

from scipy.stats import rv_continuous
import matplotlib.pyplot as plt
import numpy as np
class MyDistribution(rv_continuous):
    def _pdf(self, x):#概率密度分布函数
        return 2*sqrt(0.1)*exp(-0.1*x**2)*cos(x)**2/(sqrt(pi)*(exp(-10) + 1))
distribution = MyDistribution()
xlist=np.linspace(-8,8,300)
ylist=distribution.pdf(xlist)
samples=distribution.rvs(size=200);#取200次样

fig,ax=plt.subplots(figsize=(8,6))
ax.plot(xlist,ylist,lw=3,color='red',label="$\mathrm{ideal}$");
ax.hist(samples,color='blue',density=True, bins=np.arange(-8,8,0.25), histtype='barstacked', rwidth=0.9,label=r"$\mathrm{samples}$")
ax.legend(fontsize=20);
ax.set_xlabel(r"$x$",size=25)
ax.set_ylabel(r"$\mathrm{PDF}$",size=20)
ax.set_xlim(-8,8);
ax.tick_params(axis='both',direction='in',width=1.3,length=3,top=1,right=1,labelsize=20,pad=2)
fig.tight_layout();
fig.show();

运行结果如下:

增加采样次数,分布直方图逐渐趋于理想的概率分布函数P(x)。

离散变量分布

考虑连续变量x满足泊松分布,则可以用scipy.stats中的rv_discrete类去实现这个分布,代码如下:

from scipy.stats import rv_discrete
import matplotlib.pyplot as plt
import numpy as np
from scipy.special import factorial
class MyDistribution(rv_discrete):
    def _pmf(self, k, mu):
        return exp(-mu)*mu**k/factorial(k)
distribution = MyDistribution()
mu=2
samples=distribution.rvs(size=500,mu=mu);#取500次样
klist = np.arange(0,10,1)
plist = distribution.pmf(klist,mu)
fig, ax = plt.subplots()
ax.plot(klist, plist, 'ro', ms=12, mec='r',label="$\mathrm{ideal}$");
ax.hist(samples,color='blue',density=True, bins=klist, histtype='barstacked', rwidth=0.8,label=r"$\mathrm{samples}$",align="left")
ax.legend(fontsize=20);
fig.show();

运行结果如下:

可以修改上述MyDistribution类中的pmf函数,实现任意想要的离散分布。

二项分布Binomial Distribution

是n个独立的成功/失败试验中成功的次数的离散概率分布,其中每次试验的成功概率为p。这样的单次成功/失败试验又称为伯努利试验。实际上,当n=1时,二项分布就是伯努利分布。

'''1、定义随机变量'''
# 比如5次掷硬币实验,正面朝上的次数
n2=5
x2=np.arange(1,n2+1,1)
x2
array([1, 2, 3, 4, 5])
'''2、求对应的概率质量函数 (PMF)'''
p2=0.5
pList2=stats.binom.pmf(x2,n2,p2)
# 返回一个列表,列表中每个元素表示随机变量中对应值的概率
pList2
array([0.15625, 0.3125 , 0.3125 , 0.15625, 0.03125])
'''3、绘图'''
fig=plt.figure()
# plot在此的作用为显示两个标记点
plt.plot(x2,pList2,marker='o',linestyle='None')
'''
vlines用于绘制竖直线(vertical lines),
参数说明:vline(x坐标值, y坐标最小值, y坐标值最大值)
'''
plt.vlines(x2, 0, pList2)
plt.xlabel('随机变量:抛硬币5次')
plt.ylabel('概率')
plt.title('二项分布:n=%d,p2=%0.2f' % (n2,p2))
plt.show()

几何分布Geometric Distribution

在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。

'''1、定义随机变量'''
# 比如射箭1次中靶的概率为90%,射5次箭
k=5
x3=np.arange(1,k+1,1)
x3
array([1, 2, 3, 4, 5])
'''2、求对应的概率质量函数 (PMF)'''
p3=0.7
pList3=stats.geom.pmf(x3,p3)
# 返回一个列表,表示在第i次射击中,第一次射中的概率
pList3
array([0.7    , 0.21   , 0.063  , 0.0189 , 0.00567])
'''3、绘图'''
fig=plt.figure()
# plot在此的作用为显示两个标记点
plt.plot(x3,pList3,marker='o',linestyle='None')
'''
vlines用于绘制竖直线(vertical lines),
参数说明:vline(x坐标值, y坐标最小值, y坐标值最大值)
'''
plt.vlines(x3, 0, pList3)
plt.xlabel('随机变量:射击5次')
plt.ylabel('概率')
plt.title('几何分布:n=%d,p=%0.2f' % (k,p3))
plt.show()

泊松分布Poisson Distribution

描述在某单位时间内,事件发生n次的概率

'''1、定义随机变量'''
# 某机器每季度发生故障平均为1次,那么在一年中机器发生10次的概率为
mu=4 # 平均值
k=10 # 要求发生10次的概率
x4=np.arange(1,k+1,1)
x4
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])
'''2、求对应的概率质量函数 (PMF)'''
pList4=stats.poisson.pmf(x4,mu) # 一年的平均值为4
# 返回一个列表,表示1年中发生i次故障的概率
pList4
array([0.07326256, 0.14652511, 0.19536681, 0.19536681, 0.15629345,
       0.10419563, 0.05954036, 0.02977018, 0.01323119, 0.00529248])
'''3、绘图'''
fig=plt.figure()
# plot在此的作用为显示两个标记点
plt.plot(x4,pList4,marker='o',linestyle='None')
'''
vlines用于绘制竖直线(vertical lines),
参数说明:vline(x坐标值, y坐标最小值, y坐标值最大值)
'''
plt.vlines(x4, 0, pList4)
plt.xlabel('随机变量:发生k次故障')
plt.ylabel('概率')
plt.title('泊松分布:n=%d' % k)
plt.show()

到此这篇关于Python+Scipy实现自定义任意的概率分布的文章就介绍到这了,更多相关Python Scipy概率分布内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 用python拟合等角螺线的实现示例

    用python拟合等角螺线的实现示例

    这篇文章主要介绍了用python拟合等角螺线的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-12-12
  • Python使用turtle和matplotlib绘制圆和爱心的示例代码

    Python使用turtle和matplotlib绘制圆和爱心的示例代码

    这篇文章主要是带大家用Python的turtle和matplotlib画出圆满和爱心,文中的示例代码讲解的非常详细,对我们学习Python有一定帮助,感兴趣的可以了解一下
    2023-06-06
  • Python实现非正太分布的异常值检测方式

    Python实现非正太分布的异常值检测方式

    今天小编就为大家分享一篇Python实现非正太分布的异常值检测方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • 全网最详细的PyCharm+Anaconda的安装过程图解

    全网最详细的PyCharm+Anaconda的安装过程图解

    这篇文章主要介绍了全网最详细的PyCharm+Anaconda的安装过程图解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-01-01
  • python的常见命令注入威胁

    python的常见命令注入威胁

    不过下面可是我们开发产品初期的一些血淋淋的案例,更多的安全威胁可以看看北北同学的《python hack》PPT,里面提及了不只命令执行的威胁,那些都是我们亲身经历的代码
    2013-02-02
  • python+playwright 元素操作示例代码

    python+playwright 元素操作示例代码

    Playwright 可以与 HTML 输入元素交互,例如文本输入、复选框、单选按钮、选择选项、鼠标单击、键入字符、键和快捷方式以及上传文件和焦点元素,这篇文章主要介绍了python+playwright 元素操作,需要的朋友可以参考下
    2023-10-10
  • python脚本定时发送邮件

    python脚本定时发送邮件

    这篇文章主要为大家详细介绍了python脚本定时发送邮件,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-12-12
  • pytorch中部分矩阵乘法和数组乘法的小结

    pytorch中部分矩阵乘法和数组乘法的小结

    本文主要介绍了pytorch中部分矩阵乘法和数组乘法的小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • 简单了解Django ContentType内置组件

    简单了解Django ContentType内置组件

    这篇文章主要介绍了简单了解Django ContentType内置组件,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • python re.match函数的具体使用

    python re.match函数的具体使用

    本文主要介绍了python re.match函数的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02

最新评论