Broadcast广播机制在Pytorch Tensor Numpy中的使用详解

 更新时间:2022年08月17日 11:05:02   作者:I松风水月  
python中Broadcast机制非常实用,在python中的广播机制其实很简单,下方主要介绍Broadcast广播机制在Pytorch Tensor Numpy中的使用,希望对你有所帮助

1.什么是广播机制

根据线性代数的运算规则我们知道,矩阵运算往往都是在两个矩阵维度相同或者相匹配时才能运算。比如加减法需要两个矩阵的维度相同,乘法需要前一个矩阵的列数与后一个矩阵的行数相等。那么在 numpy、tensor 里也是同样的道理,但是在机器学习的某些算法中会出现两个维度不相同也不匹配的矩阵进行运算,那么这时候就需要用广播机制来解决,通过广播机制,其tensor参数可以自动扩展为相等大小(不需要复制数据)。下面我们以tensor为例来解释什么是广播机制。

2.广播机制的规则

先来说下广播机制的规则,只有遵循下面的规则两个张量才可以进行广播运算。

每个tensor至少有一个维度;

遍历tensor所有维度时,从末尾开始遍历(从右往左开始遍历),两个tensor存在下列情况

tensor维度相等。

tensor维度不等且其中一个维度为1或者不存在。

满足上面的条件才可以进行广播机制。

3.代码举例

相同维度,一定可以 broadcast:

import torch
x = torch.rand(1, 2, 3)
y = torch.rand(1, 2, 3)
z = x + y
print(x.shape)
print(y.shape)
print(z.shape)
print(x)
print(y)
print(z)

输出结果如下:

torch.Size([1, 2, 3])
torch.Size([1, 2, 3])
torch.Size([1, 2, 3])
tensor([[[0.0322, 0.2378, 0.4711],
         [0.9191, 0.0802, 0.4002]]])
tensor([[[0.5645, 0.9541, 0.3089],
         [0.7633, 0.7400, 0.7507]]])
tensor([[[0.5966, 1.1919, 0.7800],
         [1.6825, 0.8202, 1.1509]]])

有一个张量没有维度,一定不可以进行 broadcast:

import torch
x = torch.rand(0)
y = torch.rand(1, 2, 3)
print(x.shape)
print(y.shape)
z = x + y
print(z.shape)
print(x)
print(y)
print(z)

输出结果:

torch.Size([0])
torch.Size([1, 2, 3])
Traceback (most recent call last):
  File "D:/program/Test/broadcast/test.py", line 8, in <module>
    z = x + y
RuntimeError: The size of tensor a (0) must match the size of tensor b (3) at non-singleton dimension 2

有一个张量缺少维度,一定可以进行 broadcast:

import torch
x = torch.rand(1, 2, 3, 4)
y = torch.rand(2, 3, 4)
print(x.shape)
print(y.shape)
z = x + y
print(z.shape)
print(x)
print(y)
print(z)

输出结果:

torch.Size([1, 2, 3, 4])
torch.Size([2, 3, 4])
torch.Size([1, 2, 3, 4])
tensor([[[[0.0094, 0.1863, 0.2657, 0.3782],
          [0.3296, 0.7454, 0.2080, 0.4156],
          [0.2092, 0.5414, 0.1053, 0.3872]],

         [[0.8161, 0.3554, 0.7352, 0.2116],
          [0.7459, 0.1662, 0.7555, 0.4548],
          [0.2611, 0.0353, 0.1862, 0.5948]]]])
tensor([[[0.4637, 0.3938, 0.2039, 0.3892],
         [0.4146, 0.8713, 0.3947, 0.5345],
         [0.2401, 0.3800, 0.3747, 0.8381]],

        [[0.0459, 0.1242, 0.3529, 0.1527],
         [0.2361, 0.2850, 0.8671, 0.8040],
         [0.6575, 0.4075, 0.8156, 0.2638]]])
tensor([[[[0.4730, 0.5801, 0.4695, 0.7674],
          [0.7442, 1.6167, 0.6027, 0.9501],
          [0.4493, 0.9214, 0.4800, 1.2253]],

         [[0.8620, 0.4796, 1.0881, 0.3643],
          [0.9820, 0.4512, 1.6227, 1.2588],
          [0.9186, 0.4428, 1.0018, 0.8586]]]])

上面的张量y跟张量x相比缺少一个维度,根据广播机制的规则我们从最后一个维度进行匹配,后面三个维度都一样,张量y的缺少一个维度,于是触发广播机制。

两个张量的维度不相等,其中有一个张量的对应维度为1或者缺失,一定可以进行 broadcast:

import torch
x = torch.rand(1, 2, 3, 4)
y = torch.rand(2, 1, 1)
print(x.shape)
print(y.shape)
z = x + y
print(z.shape)
print(x)
print(y)
print(z)

输出结果:

torch.Size([1, 2, 3, 4])
torch.Size([2, 1, 1])
torch.Size([1, 2, 3, 4])
tensor([[[[0.8670, 0.0134, 0.7929, 0.4109],
          [0.3595, 0.8457, 0.2819, 0.8470],
          [0.5040, 0.9281, 0.9161, 0.7305]],

         [[0.3798, 0.3866, 0.4680, 0.5744],
          [0.6984, 0.6501, 0.2235, 0.3099],
          [0.9861, 0.8598, 0.7635, 0.3238]]]])
tensor([[[0.3393]],

        [[0.1775]]])
tensor([[[[1.2062, 0.3527, 1.1322, 0.7501],
          [0.6987, 1.1850, 0.6212, 1.1863],
          [0.8433, 1.2674, 1.2554, 1.0698]],

         [[0.5574, 0.5641, 0.6455, 0.7519],
          [0.8759, 0.8276, 0.4010, 0.4875],
          [1.1636, 1.0373, 0.9410, 0.5013]]]])

以上就是广播机制的操作,只要记住几个规则就行了,注意tensor在进行运算的时候是从后往前匹配运算的。

4.原地操作

在进行广播机制的时候我们要注意一个原地操作运算,什么是原地操作运算?原地操作运算就是指改变一个tensor的值的时候,不经过复制操作,而是直接在原来的内存上改变它的值。在pytorch中经常加后缀“”来代表原地操作符,例:.add _()、.scatter(),原地操作不允许tensor使用广播机制那样来改变张量形状维度大小,如下例子所示。

import torch
x = torch.rand(1,3,1)
y = torch.rand(3,1,7)
print(x.shape)
print(y.shape)
z = x.add_(y)
print(z.shape)
print(x)
print(y)
print(z)

输出结果:

torch.Size([1, 3, 1])
torch.Size([3, 1, 7])
Traceback (most recent call last):
  File "D:/program/Test/broadcast/test.py", line 8, in <module>
    z = x.add_(y)
RuntimeError: output with shape [1, 3, 1] doesn't match the broadcast shape [3, 3, 7]

到此这篇关于Broadcast广播机制在Pytorch Tensor Numpy中的使用详解的文章就介绍到这了,更多相关Pytorch Broadcast内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • wxpython 学习笔记 第一天

    wxpython 学习笔记 第一天

    学习wxpython的朋友,可以看下,了解下wxpython
    2009-03-03
  • Python中的localtime()方法使用详解

    Python中的localtime()方法使用详解

    这篇文章主要介绍了Python中的localtime()方法使用详解,是Python入门学习的基础知识,需要的朋友可以参考下
    2015-05-05
  • 在win10和linux上分别安装Python虚拟环境的方法步骤

    在win10和linux上分别安装Python虚拟环境的方法步骤

    这篇文章主要介绍了在win10和linux上分别安装Python虚拟环境的方法步骤,虚机环境有非常多的优点,今天我们用的虚拟环境是virtualenv。感兴趣的小伙伴们可以参考一下
    2019-05-05
  • Python绘制股票移动均线的实例

    Python绘制股票移动均线的实例

    今天小编就为大家分享一篇Python绘制股票移动均线的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • python制作可视化GUI界面自动分类管理文件

    python制作可视化GUI界面自动分类管理文件

    这篇文章主要为大家介绍了python制作可视化GUI界面实现自动分类管理文件,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • Python爬虫分析汇总

    Python爬虫分析汇总

    这篇文章主要详细的介绍了Python爬虫的相关资料,需要的朋友可以参考下面文章内容,希望能帮助到你
    2021-09-09
  • 使用Python脚本zabbix自定义key监控oracle连接状态

    使用Python脚本zabbix自定义key监控oracle连接状态

    这篇文章主要介绍了使用Python脚本zabbix自定义key监控oracle连接状态,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-08-08
  • Pytorch中torch.argmax()函数使用及说明

    Pytorch中torch.argmax()函数使用及说明

    这篇文章主要介绍了Pytorch中torch.argmax()函数使用及说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-01-01
  • Python导入模块的3种方式小结

    Python导入模块的3种方式小结

    本文主要介绍了Python导入模块的3种方式小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • Pygame游戏开发之太空射击实战子弹与碰撞处理篇

    Pygame游戏开发之太空射击实战子弹与碰撞处理篇

    相信大多数8090后都玩过太空射击游戏,在过去游戏不多的年代太空射击自然属于经典好玩的一款了,今天我们来自己动手实现它,在编写学习中回顾过往展望未来,下面开始讲解子弹与碰撞处理,在本课中,我们将添加玩家与敌人之间的碰撞,以及添加供玩家射击的子弹
    2022-08-08

最新评论