Python实现RLE格式与PNG格式互转
介绍
在机器视觉领域的深度学习中,每个数据集都有一份标注好的数据用于训练神经网络。
为了节省空间,很多数据集的标注文件使用RLE的格式。
但是神经网络的输入一定是一张图片,为此必须把RLE格式的文件转变为图像格式。
图像格式主要又分为 .jpg 和 .png 两种格式,其中label数据一定不能使用 .jpg,因为它因为压缩算算法的原因,会造成图像失真,图像各个像素的值可能会发生变化。分割任务的数据集的 label 图像中每一个像素都代表了该像素点所属的类别,所以这样的失真是无法接受的。为此只能使用 .png 格式作为label,pascol voc 和 coco 数据集正是这样做的。
1.PNG2RLE
PNG格式转RLE格式
#!---- coding: utf- ---- import numpy as np
def rle_encode(binary_mask): ''' binary_mask: numpy array, 1 - mask, 0 - background Returns run length as string formated ''' pixels = binary_mask.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return ' '.join(str(x) for x in runs)
2.RLE2PNG
RLE格式转PNG格式
#!--*-- coding: utf- --*-- import numpy as np def rle_decode(mask_rle, shape): ''' mask_rle: run-length as string formated (start length) shape: (height,width) of array to return Returns numpy array, 1 - mask, 0 - background ''' s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths binary_mask = np.zeros(shape[0] * shape[1], dtype=np.uint8) for lo, hi in zip(starts, ends): binary_mask[lo:hi] = 1 return binary_mask.reshape(shape)
3.示例
''' RLE: Run-Length Encode ''' from PIL import Image import numpy as np def __main__(): maskfile = '/path/to/test.png' mask = np.array(Image.open(maskfile)) binary_mask = mask.copy() binary_mask[binary_mask <= 127] = 0 binary_mask[binary_mask > 127] = 1 # encode rle_mask = rle_encode(binary_mask) # decode binary_mask_decode = self.rle_decode(rle_mask, binary_mask.shape[:2])
4.完整代码如下
''' RLE: Run-Length Encode ''' #!--*-- coding: utf- --*-- import numpy as np from PIL import Image import matplotlib.pyplot as plt # M1: class general_rle(object): ''' ref.: https://www.kaggle.com/stainsby/fast-tested-rle ''' def __init__(self): pass def rle_encode(self, binary_mask): pixels = binary_mask.flatten() # We avoid issues with '1' at the start or end (at the corners of # the original image) by setting those pixels to '0' explicitly. # We do not expect these to be non-zero for an accurate mask, # so this should not harm the score. pixels[0] = 0 pixels[-1] = 0 runs = np.where(pixels[1:] != pixels[:-1])[0] + 2 runs[1::2] = runs[1::2] - runs[:-1:2] return runs def rle_to_string(self, runs): return ' '.join(str(x) for x in runs) def check(self): test_mask = np.asarray([[0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 1], [0, 0, 0, 0]]) assert rle_to_string(rle_encode(test_mask)) == '7 2 11 2' # M2: class binary_mask_rle(object): ''' ref.: https://www.kaggle.com/paulorzp/run-length-encode-and-decode ''' def __init__(self): pass def rle_encode(self, binary_mask): ''' binary_mask: numpy array, 1 - mask, 0 - background Returns run length as string formated ''' pixels = binary_mask.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return ' '.join(str(x) for x in runs) def rle_decode(self, mask_rle, shape): ''' mask_rle: run-length as string formated (start length) shape: (height,width) of array to return Returns numpy array, 1 - mask, 0 - background ''' s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths binary_mask = np.zeros(shape[0] * shape[1], dtype=np.uint8) for lo, hi in zip(starts, ends): binary_mask[lo:hi] = 1 return binary_mask.reshape(shape) def check(self): maskfile = '/path/to/test.png' mask = np.array(Image.open(maskfile)) binary_mask = mask.copy() binary_mask[binary_mask <= 127] = 0 binary_mask[binary_mask > 127] = 1 # encode rle_mask = self.rle_encode(binary_mask) # decode binary_mask2 = self.rle_decode(rle_mask, binary_mask.shape[:2])
到此这篇关于Python实现RLE格式与PNG格式互转的文章就介绍到这了,更多相关Python RLE转PNG内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
用Python删除本地目录下某一时间点之前创建的所有文件的实例
下面小编就为大家分享一篇用Python删除本地目录下某一时间点之前创建的所有文件的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2017-12-12
最新评论