Python numpy中np.random.seed()的详细用法实例

 更新时间:2022年08月19日 10:05:43   作者:脱发的小猿  
在学习人工智能时,大量的使用了np.random.seed(),利用随机数种子,使得每次生成的随机数相同,下面这篇文章主要给大家介绍了关于Python numpy中np.random.seed()的详细用法,需要的朋友可以参考下

引言

在进行机器学习和深度学习中,我们会经常用到np.random.seed(),利用随机数种子,使得每次生成的随机数相同。

numpy.randn.randn(d0,d1,...,dn)

  • randn函数根据给定维度生成大概率在(-2.58~+2.58)之间的数据
  • randn函数返回一个或者一组样本,具有标准正态分布
  • dn表示每个维度
  • 返回值为指定维度的array
import numpy as np

a = np.random.randn(2,4)  #4*2矩阵
print(a)

b = np.random.randn(4,3,2)  #shape:4*3*2
print(b)

我们将带着两个问题进行np.random.seed()的学习:

  1.np.random.seed()是否一直有效?

  2.np.random.seed(Argument)的参数作用?

E.G.实验

# -*- coding: utf-8 -*- 
# @Time : 2019/10/26 20:57 
# @Author : BaoBao
# @Mail : baobaotql@163.com 
# @File : random.seed.py 
# @Software: PyCharm

import numpy as np

if __name__ == '__main__':
    i = 0
    while (i < 6):
        if (i < 3):
            np.random.seed(0)
            print(np.random.randn(1, 5))
        else:
            print(np.random.randn(1, 5))
            pass
        i += 1

    print("-------------------")
    i = 0
    while (i < 2):
        print(np.random.randn(1, 5))
        i += 1
    print(np.random.randn(2, 5))

    print("---------reset----------")
    np.random.seed(0)
    i = 0
    while (i < 8):
        print(np.random.randn(1, 5))
        i += 1

运行截图:

可以看出,np.random.seed()对后面的随机数一直有效。

两次利用random.seed()后,即使跳出循环以后,生成随机数的结果依然相同。第一次跳出while循环后,进入第二次while循环,

得到的两个随机数组确实和加了随机数种子不一样。但是后面的加入随机数种子的,八次循环中的结果和前面的结果是一样的。说明,

随机数种子对后面的结果一直有影响。同时,加入随机数种子以后,后面的数组都是按一定的顺序生成的。

E.G.随机数种子参数的作用

# -*- coding: utf-8 -*- 
# @Time : 2019/10/26 20:57 
# @Author : BaoBao
# @Mail : baobaotql@163.com 
# @File : random.seed.py 
# @Software: PyCharm
import numpy as np

if __name__ == '__main__':
    i = 0
    np.random.seed(0)
    while (i < 3):
        print(np.random.randn(1, 5))
        i += 1
    i = 0
    print("---------------------")
    np.random.seed(1)
    i = 0
    while (i < 3):
        print(np.random.randn(1, 5))
        i += 1

运行截图:

当随机数种子参数为0和1时,生成的随机数结果相同。说明该参数指定了一个随机数生成的起始位置。每个参数对应一个位置。

并且在该参数确定后,其后面的随机数的生成顺序也就确定了。所以,随机数种子的参数怎么选择?这个参数只是确定一下随机数的起始位置,可随意分配.

补充:一个随机种子在代码中只作用一次,只作用于其定义位置的下一次随机数生成 

import numpy as np
num=0
print(np.random.random())#没有设置随机种子 那么这里是根据系统时间为参数生成的随机数
np.random.seed(5)
while(num<5):
    print(np.random.random())
    num+=1

 

总结

到此这篇关于Python numpy中np.random.seed()详细用法的文章就介绍到这了,更多相关numpy.random.seed()的用法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python中很常用的函数map()用法实例

    Python中很常用的函数map()用法实例

    这篇文章主要给大家介绍了关于Python中很常用的函数map()用法的相关资料,map()函数是Python的内置函数,会根据提供的函数参数,对传入的序列数据进行映射,需要的朋友可以参考下
    2023-10-10
  • Python 窗体(tkinter)按钮 位置实例

    Python 窗体(tkinter)按钮 位置实例

    今天小编就为大家分享一篇Python 窗体(tkinter)按钮 位置实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • python进行相关性分析并绘制散点图详解

    python进行相关性分析并绘制散点图详解

    这篇文章主要介绍了python进行相关性分析并绘制散点图,具有一定借鉴价值,需要的朋友可以参考下,希望能够给你带来帮助
    2021-09-09
  • Python初识二叉树续之实战binarytree

    Python初识二叉树续之实战binarytree

    binarytree库是一个Python的第三方库,这个库实现了一些二叉树相关的常用方法,使用二叉树时,可以直接调用,不需要再自己实现,下面这篇文章主要给大家介绍了关于Python初识二叉树之实战binarytree的相关资料,需要的朋友可以参考下
    2022-05-05
  • Python实现带下标索引的遍历操作示例

    Python实现带下标索引的遍历操作示例

    这篇文章主要介绍了Python实现带下标索引的遍历操作,结合具体实例形式分析了2种带索引的遍历操作实现方法及相关操作注意事项,需要的朋友可以参考下
    2019-05-05
  • python实现复制整个目录的方法

    python实现复制整个目录的方法

    这篇文章主要介绍了python实现复制整个目录的方法,涉及Python中shutil模块的相关操作技巧,需要的朋友可以参考下
    2015-05-05
  • Pytorch实战之数据加载和处理详解

    Pytorch实战之数据加载和处理详解

    Pytorch提供了许多工具来简化和希望数据加载,使代码更具可读性,本文将通过一些简单示例为大家具体讲讲,感兴趣的小伙伴可以跟随小编一起学习一下
    2023-06-06
  • Numpy实现卷积神经网络(CNN)的示例

    Numpy实现卷积神经网络(CNN)的示例

    这篇文章主要介绍了Numpy实现卷积神经网络(CNN)的示例,帮助大家更好的理解和使用Numpy,感兴趣的朋友可以了解下
    2020-10-10
  • 使用python3 实现插入数据到mysql

    使用python3 实现插入数据到mysql

    今天小编就为大家分享一篇使用python3 实现插入数据到mysql,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • 在Python中使用lambda高效操作列表的教程

    在Python中使用lambda高效操作列表的教程

    这篇文章主要介绍了在Python中使用lambda高效操作列表的教程,结合了包括map、filter、reduce、sorted等函数,需要的朋友可以参考下
    2015-04-04

最新评论