python绘图之坐标轴的超详细讲解

 更新时间:2022年08月30日 10:34:12   作者:大风起兮_  
在使用matplotlib模块时画坐标图时,往往需要对坐标轴设置很多参数,这些参数包括横纵坐标轴范围、坐标轴刻度大小、坐标轴名称等,下面这篇文章主要给大家介绍了关于python绘图之坐标轴的相关资料,需要的朋友可以参考下

1. 2D坐标轴

1.1 绘制简单的曲线

import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(-1,1,50)#-1到1中画50个点
y=x**2
plt.plot(x,y,color='green')
plt.tick_params(axis='x',colors='blue')
plt.tick_params(axis='y',colors='red')
plt.show()

作图:

1.2 坐标轴的刻度线向内

import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(-1,1,50)#-1到1中画50个点
y=x**2
# 下面两行代码要放在plt.plot的前面
plt.rcParams['xtick.direction'] = 'in'#将x轴的刻度线方向设置向内
plt.rcParams['ytick.direction'] = 'in'#将y轴的刻度线方向设置向内

plt.plot(x,y,color='green')
plt.tick_params(axis='x',colors='blue')
plt.tick_params(axis='y',colors='red')
plt.show()

1.3 将坐标刻度从整0开始

plt.margins(x=0)
plt.margins(y=0)

#设置坐标轴范围
#plt.ylim([0,0.8])
#plt.xlim([0,0.75])

从0开始,不留空隙

1.4 设置刻度栅格

简单的刻度:

plt.grid()

主刻度和次刻度

import matplotlib.pyplot as plt
import numpy as np
plt.figure(figsize=(17,3))
ax = plt.gca()
ax.xaxis.set_major_locator(plt.MultipleLocator(0.2))    #设置x轴主刻度
ax.xaxis.set_minor_locator(plt.MultipleLocator(0.04))   #设置x轴次刻度
ax.yaxis.set_major_locator(plt.MultipleLocator(0.5))    #设置x轴次刻度
ax.yaxis.set_minor_locator(plt.MultipleLocator(0.1))    #设置x轴次刻度
ax.grid(which='major',axis="both",linewidth=0.75,linestyle='-',color='r')
ax.grid(which='minor',axis="both",linewidth=0.25,linestyle='-',color='r')
x=np.linspace(0,3*np.pi,50)#-1到1中画50个点
y=2*np.sin(x)
plt.plot(x,y)
plt.margins(x=0)
plt.margins(y=0)
plt.show()

下面的图形类似于心电图纸绘制,关于心电图相关的绘制,具体在使用python绘制心电图中体现:

1.5 不显示坐标

只是坐标刻度不可见,两种方式的效果一样

# plt.xticks([])
plt.yticks([])

# 或者下面的
# frame.axes.get_xaxis().set_visible(False) # x 轴不可见
frame.axes.get_yaxis().set_visible(False) # y 轴不可见

关闭两者坐标轴,只有曲线图形

plt.axis('off')

1.6 坐标值

为坐标设置刻度值, 并且将刻度值旋转45度

import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(0,2,50)#-1到1中画50个点
y=x**2
plt.rcParams['xtick.direction'] = 'in'#将x轴的刻度线方向设置向内
plt.rcParams['ytick.direction'] = 'in'#将y轴的刻度线方向设置向内
ax = plt.gca()
xlabel=[str(val)+'_1' for val in range(100,110)]
ax.set_xticklabels(xlabel)
plt.xticks(rotation = 45)
plt.plot(x,y,color='green')
plt.tick_params(axis='x',colors='blue')
plt.tick_params(axis='y',colors='red')
plt.margins(x=0)
plt.margins(y=0)
plt.show()

1.7 绘制横线和竖线

plt.axvline(1)
plt.axhline(1.5)

![在这里插入图片描述](https://img-blog.csdnimg.cn/519c11090ad8418f92e84d6a6bd7d19d.png

1.8 设置坐标点的颜色

下图中设置y轴第3个坐标值的颜色为黄色,x轴第6个坐标值颜色为绿色。

import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(0,2,50)#-1到1中画50个点
y=x**2
plt.rcParams['xtick.direction'] = 'in'#将x轴的刻度线方向设置向内
plt.rcParams['ytick.direction'] = 'in'#将y轴的刻度线方向设置向内
ax = plt.gca()
plt.plot(x,y,color='green')
plt.tick_params(axis='x',colors='blue')
plt.tick_params(axis='y',colors='red')
ax.get_yticklabels()[3].set_color("y")
ax.get_xticklabels()[6].set_color("g")
plt.show()

1.9 双坐标

代码如下:

import numpy as np
import matplotlib.pyplot as plt

t = np.arange(0.01, 10.0, 0.01)
data1 = np.exp(t)
data2 = np.sin(2 * np.pi * t)

fig, ax1 = plt.subplots()

color = 'tab:red'
ax1.set_xlabel('time (s)')
ax1.set_ylabel('exp', color=color)
ax1.plot(t, data1, color=color)
ax1.tick_params(axis='y', labelcolor=color)

ax2 = ax1.twinx()  # instantiate a second axes that shares the same x-axis

color = 'tab:blue'
ax2.set_ylabel('sin', color=color)  # we already handled the x-label with ax1
ax2.plot(t, data2, color=color)
ax2.tick_params(axis='y', labelcolor=color)

fig.tight_layout()  # otherwise the right y-label is slightly clipped
plt.show()

2. 3D坐标轴

2.1 绘制3D散点图

关键代码ax.scatter(xs, ys, zs, c=c, marker=m),输入数据xs,ys,zs是相同长度的一维数据。c是颜色,marker是散点类型。

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
def randrange(n, vmin, vmax):
    return (vmax - vmin)*np.random.rand(n) + vmin
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
 
n = 100
for c, m, zlow, zhigh in [('r', '*', -10, 20), ('b', 'o', -30, -10)]:
    xs = randrange(n, 23, 32)
    ys = randrange(n, 0, 100)
    zs = randrange(n, zlow, zhigh)
    ax.scatter(xs, ys, zs, c=c, marker=m)
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()

2.2 绘制3D曲面图

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

fig=plt.figure(num=1,figsize=(8,6))
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X ** 2 + Y ** 2)
# height value
Z = np.cos(R)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow'),edgecolors='white')
ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.get_cmap('rainbow'))#投影等高线,改变zdir='x', offset=-4实现投影到不同坐标轴     
ax.set_zlim(-2, 2)
ax.tick_params(axis='x',colors='g')
ax.tick_params(axis='y',colors='g')
ax.tick_params(axis='z',colors='g')
plt.show()

2.3 绘制3D柱形图

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

X=np.arange(0, 9, step=1)#X轴的坐标
Y=np.arange(0, 10, step=1)#Y轴的坐标
arr = [[np.random.randint(1,50) for i in range(9)] for i in range(10)]
Z = np.array(arr)

xx, yy=np.meshgrid(X, Y)#网格化坐标
X, Y=xx.ravel(), yy.ravel()#矩阵扁平化
bottom=np.zeros_like(X)#设置柱状图的底端位值
Z=Z.ravel()#扁平化矩阵

width=height=0.8#每一个柱子的长和宽
#绘图设置
fig=plt.figure()
ax=fig.gca(projection='3d')#三维坐标轴
ax.bar3d(X, Y, bottom, width, height, Z, shade=True,color='lightgreen')#
#坐标轴设置
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()

引用

[1]Matplotlib 文档

[2]python绘制三维图

[3]python-绘制3D柱形图

[4]Python + matplotlib更改纵横坐标刻度颜色

[5]Python绘图总结(Matplotlib篇)之坐标轴及刻度

总结

到此这篇关于python绘图之坐标轴的文章就介绍到这了,更多相关python绘图坐标轴内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python如何用matplotlib创建三维图表

    python如何用matplotlib创建三维图表

    这篇文章主要介绍了python如何在matplotlib中创建三维图表,帮助大家更好的利用python进行数据分析,感兴趣的朋友可以了解下
    2021-01-01
  • Python3中zip()函数知识点小结

    Python3中zip()函数知识点小结

    本文主要介绍了Python3中zip()函数知识点小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • Pytorch基础之torch.randperm的使用

    Pytorch基础之torch.randperm的使用

    这篇文章主要介绍了Pytorch基础之torch.randperm的使用方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • 详解python做UI界面的方法

    详解python做UI界面的方法

    在本文里我们给大家整理了关于python做UI界面的方法和具体步骤,对此有需要的朋友们可以跟着学习参考下。
    2019-02-02
  • 详解Numpy数组转置的三种方法T、transpose、swapaxes

    详解Numpy数组转置的三种方法T、transpose、swapaxes

    这篇文章主要介绍了详解Numpy数组转置的三种方法T、transpose、swapaxes,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2019-05-05
  • PyTorch中Tensor的维度变换实现

    PyTorch中Tensor的维度变换实现

    这篇文章主要介绍了PyTorch中Tensor的维度变换实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-08-08
  • Opencv实现二维直方图的计算及绘制

    Opencv实现二维直方图的计算及绘制

    这篇博客将介绍如何使用Opencv进行二维直方图的计算及绘制,维直方图可以让我们对不同的像素密度有更好的了解,感兴趣的可以了解一下
    2021-07-07
  • python调用摄像头拍摄数据集

    python调用摄像头拍摄数据集

    这篇文章主要为大家详细介绍了Python调用摄像头拍摄数据集,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-06-06
  • Python 跨.py文件调用自定义函数说明

    Python 跨.py文件调用自定义函数说明

    这篇文章主要介绍了Python 跨.py文件调用自定义函数说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • python 模拟网站登录——滑块验证码的识别

    python 模拟网站登录——滑块验证码的识别

    这篇文章主要介绍了python 模拟网站登录——滑块验证码的识别,帮助大家更好的理解和学习使用python的爬虫技术,感兴趣的朋友可以了解下
    2021-03-03

最新评论