Python pandas中apply函数简介以及用法详解

 更新时间:2022年09月09日 10:38:28   作者:独影月下酌酒  
apply()函数是pandas里面所有函数中自由度最高的函数, apply()函数的参数是一个函数指针,这里可以使用lambda表达式帮助简化代码,下面这篇文章主要给大家介绍了关于Python pandas中apply函数简介以及用法的相关资料,需要的朋友可以参考下

1.基本信息

​ Pandas 的 apply() 方法是用来调用一个函数(Python method),让此函数对数据对象进行批量处理。Pandas 的很多对象都可以使用 apply() 来调用函数,如 Dataframe、Series、分组对象、各种时间序列等。

2.语法结构

apply() 使用时,通常放入一个 lambda 函数表达式、或一个函数作为操作运算,官方上给出DataFrame的 apply() 用法:

DataFrame.apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwargs)

参数:

  • func:函数或 lambda 表达式,应用于每行或者每列
  • axis:{0 or ‘index’, 1 or ‘columns’}, 默认为0
    • 0 or ‘index’: 表示函数处理的是每一列
    • 1 or ‘columns’: 表示函数处理的是每一行
  • raw:bool 类型,默认为 False;
    • False ,表示把每一行或列作为 Series 传入函数中;
    • True,表示接受的是 ndarray 数据类型;
  • result_type:{‘expand’, ‘reduce’, ‘broadcast’, None}, default None
    These only act when axis=1 (columns):
    • ‘expand’ : 列表式的结果将被转化为列。
    • ‘reduce’ : 如果可能的话,返回一个 Series,而不是展开类似列表的结果。这与 expand 相反。
    • ‘broadcast’ : 结果将被广播到 DataFrame 的原始形状,原始索引和列将被保留。
  • args: func 的位置参数
  • **kwargs:要作为关键字参数传递给 func 的其他关键字参数,1.3.0 开始支持

返回值:

  • Series 或者 DataFrame:沿数据的给定轴应用 func 的结果
	Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns(``axis=1``). 
	传递给函数的对象是Series对象,其索引是DataFrame的索引(axis=0)或DataFrame的列(axis=1)。
	By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise,it depends on the `result_type` argument.
	默认情况下( result_type=None),最终的返回类型是从应用函数的返回类型推断出来的。否则,它取决于' result_type '参数。

注:DataFrame与Series的区别与联系:

区别:

  • series,只是一个一维结构,它由index和value组成。
  • dataframe,是一个二维结构,除了拥有index和value之外,还拥有column。

联系:

  • dataframe由多个series组成,无论是行还是列,单独拆分出来都是一个series。

3.使用案例

3.1 DataFrame使用apply

官方使用案例

import pandas as pd
import numpy as np

df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
df
   A  B
0  4  9
1  4  9
2  4  9


# 使用numpy通用函数 (如 np.sqrt(df)),
df.apply(np.sqrt)
'''
     A    B
0  2.0  3.0
1  2.0  3.0
2  2.0  3.0
'''

# 使用聚合功能
df.apply(np.sum, axis=0)
'''
A    12
B    27
dtype: int64
'''

df.apply(np.sum, axis=1)
'''
0    13
1    13
2    13
dtype: int64
'''

# 在每行上返回类似列表的内容
df.apply(lambda x: [1, 2], axis=1)
'''
0    [1, 2]
1    [1, 2]
2    [1, 2]
dtype: object
'''

# result_type='expand' 将类似列表的结果扩展到数据的列
df.apply(lambda x: [1, 2], axis=1, result_type='expand')

'''
   0  1
0  1  2
1  1  2
2  1  2
'''

# 在函数中返回一个序列,生成的列名将是序列索引。
df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1)

'''
   foo  bar
0    1    2
1    1    2
2    1    2
'''

# result_type='broadcast' 将确保函数返回相同的形状结果
# 无论是 list-like 还是 scalar,并沿轴进行广播
# 生成的列名将是原始列名。
df.apply(lambda x: [1, 2], axis=1, result_type='broadcast')
'''
A  B
0  1  2
1  1  2
2  1  2
'''

其他案例:

import numpy as np
import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3],
                   'B': [4, 5, 6],
                   'C': [7, 8, 9]},
                  index=['a', 'b', 'c'])
df
	A	B	C
a	1	4	7
b	2	5	8
c	3	6	9

# 对各列应用函数 axis=0
df.apply(lambda x: np.sum(x))
A     6
B    15
C    24
dtype: int64

# 对各行应用函数
df.apply(lambda x: np.sum(x), axis=1)
a    12
b    15
c    18
dtype: int64

3.2 Series使用apply

官网案例

s = pd.Series([20, 21, 12],index=['London', 'New York', 'Helsinki'])
s
'''
London      20
New York    21
Helsinki    12
dtype: int64
'''

# 定义函数并将其作为参数传递给 apply,求值平方化。
def square(x):
     return x ** 2

s.apply(square)
'''
London      400
New York    441
Helsinki    144
dtype: int64
'''

# 通过将匿名函数作为参数传递给 apply
s.apply(lambda x: x ** 2)
'''
London      400
New York    441
Helsinki    144
dtype: int64
'''

# 定义一个需要附加位置参数的自定义函数
# 并使用args关键字传递这些附加参数。
def subtract_custom_value(x, custom_value):
     return x - custom_value

s.apply(subtract_custom_value, args=(5,))
'''
London      15
New York    16
Helsinki     7
dtype: int64
'''

# 定义一个接受关键字参数并将这些参数传递
# 给 apply 的自定义函数。
def add_custom_values(x, **kwargs):
     for month in kwargs:
         x += kwargs[month]
     return x

s.apply(add_custom_values, june=30, july=20, august=25)
'''
London      95
New York    96
Helsinki    87
dtype: int64
'''

# 使用Numpy库中的函数
s.apply(np.log)
'''
London      2.995732
New York    3.044522
Helsinki    2.484907
dtype: float64
'''

3.3 其他案例

import pandas as pd

# 显示所有列
pd.set_option('display.max_columns', None)
# 显示所有行
pd.set_option('display.max_rows', None)
# 设置value的显示长度为100,默认为50
pd.set_option('max_colwidth', 100)
# 用来计算日期差的包
import datetime

def dataInterval(data1, data2):
    """
    Args:
    :param data1: datetime
    :param data2: datetime
    :return: delta days
    """
    d1 = datetime.datetime.strptime(data1, '%Y-%m-%d')
    d2 = datetime.datetime.strptime(data2, '%Y-%m-%d')
    delta = d1 - d2
    return delta.days

def getInterval(arrLike):  
    """
    Args:
    :param arrLike: DataFrame 
    :return: delta days
    """
    PublishedTime = arrLike['PublishedTime']
    ReceivedTime = arrLike['ReceivedTime']
    days = dataInterval(PublishedTime.strip(), ReceivedTime.strip()) 
    return days

def getInterval_new(arrLike, before, after): 
    """
    Args:
    :param arrLike: DataFrame
    :param before: forward time
    :param after: backwar time
    :return: delta days
    """
    before = arrLike[before]
    after = arrLike[after]
    days = dataInterval(after.strip(), before.strip())  
    return days
if __name__ == '__main__':
    df = pd.read_excel('./data/NS_info.xls')
    print(df.head())
    # method 1
    df['TimeInterval'] = df.apply(getInterval, axis=1)
    print(df.head())
    # method 2
    df['TimeInterval'] = df.apply(getInterval_new,axis=1, 
                                  args=('ReceivedTime', 'PublishedTime')) 
	# method 3
    df['TimeInterval'] = df.apply(getInterval_new,axis=1, 
                   **{'before': 'ReceivedTime', 'after': 'PublishedTime'})  
	# method 4
    df['TimeInterval'] = df.apply(getInterval_new,axis=1, before='ReceivedTime', after='PublishedTime') 

4.总结

1.apply方法都是通过传入一个函数或者lambda表达式对数据进行批量处理

2.apply方法处理的都是一个Series对象

参考链接:

1.https://blog.csdn.net/missyougoon/article/details/83301712

2.https://blog.csdn.net/qq_19528953/article/details/79348929

到此这篇关于Python pandas中apply函数简介以及用法详解的文章就介绍到这了,更多相关pandas apply函数用法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python中遍历文件的3个方法

    python中遍历文件的3个方法

    这篇文章主要介绍了python中遍历文件的3个方法,本文分别使用os.path.walk()、os.walk()、os.listdir()来实现,需要的朋友可以参考下
    2014-09-09
  • Python OpenCV中cv2.minAreaRect实例解析

    Python OpenCV中cv2.minAreaRect实例解析

    minAreaRect的主要作用是获取一个多边形(就是有很多个点组成的一个图形)的最小旋转矩形(旋转矩形就是我们平常见到的水平框带了角度),这篇文章主要给大家介绍了关于Python OpenCV中cv2.minAreaRect的相关资料,需要的朋友可以参考下
    2022-11-11
  • django实现同一个ip十分钟内只能注册一次的实例

    django实现同一个ip十分钟内只能注册一次的实例

    下面小编就为大家带来一篇django实现同一个ip十分钟内只能注册一次的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-11-11
  • python实现遍历文件夹图片并重命名

    python实现遍历文件夹图片并重命名

    这篇文章主要为大家详细介绍了python实现遍历文件夹图片并重命名,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-03-03
  • python实现按关键字筛选日志文件

    python实现按关键字筛选日志文件

    今天小编大家分享一篇python实现按关键字筛选日志文件方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • 一文带你解密Python迭代器的实现原理

    一文带你解密Python迭代器的实现原理

    这篇文章主要为大家详细介绍了Python中迭代器的实现原理,文中的示例代码讲解详细,对我们学习Python有一定的帮助,需要的可以参考一下
    2022-12-12
  • 深入了解python全局变量,局部变量和命名空间

    深入了解python全局变量,局部变量和命名空间

    这篇文章主要为大家介绍了python全局变量,局部变量和命名空间,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-12-12
  • Pandas DataFrame数据修改值的方法

    Pandas DataFrame数据修改值的方法

    本文主要介绍了Pandas DataFrame修改值,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-03-03
  • Python基于PycURL自动处理cookie的方法

    Python基于PycURL自动处理cookie的方法

    这篇文章主要介绍了Python基于PycURL自动处理cookie的方法,实例分析了Python基于curl操作cookie的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-07-07
  • 对Python3+gdal 读取tiff格式数据的实例讲解

    对Python3+gdal 读取tiff格式数据的实例讲解

    今天小编就为大家分享一篇对Python3+gdal 读取tiff格式数据的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12

最新评论