python中的bisect模块与二分查找详情

 更新时间:2022年09月13日 16:58:43   作者:独影月下酌酒  
这篇文章主要介绍了python中的bisect模块与二分查找详情,bisect是python的内置模块, 用于有序序列的插入和查找。 插入的数据不会影响列表的排序,更多详细内容需要的朋友可以参考一下

1.bisect模块概述

bisect是python的内置模块, 用于有序序列的插入和查找。 插入的数据不会影响列表的排序, 但是原有列表需要是有序的, 并且不能是倒序.

Bisect模块提供的函数有:

  • bisect.bisect_left(a,x, lo=0, hi=len(a))
  • bisect.bisect_right(a,x, lo=0, hi=len(a))
  • bisect.bisect(a, x,lo=0, hi=len(a))
  • bisect.insort_left(a,x, lo=0, hi=len(a))
  • bisect.insort_right(a,x, lo=0, hi=len(a))
  • bisect.insort(a, x,lo=0, hi=len(a))

2.bisect模块的函数详解

2.1 bisect.bisect*()方法

  • bisect.bisect_left(a,x,lo=0,hi=len(a),*,key=None)

在有序数组a中[lo,hi]区间内查找x插入的位置,返回的是索引值。如果a中有跟x相同的元素,则x插入的位置是左边,key指定了一个单参数的方法,该方法的返回值作为与k比较的基准。

值得注意的是,key参数是3.10版本以后才添加的功能

  • bisect.bisect_right(a,x,lo=0,hi=len(a),*,key=None),在有序数组a中[lo,hi]区间内查找x插入的位置,返回索引值。如果a中有跟x相同的元素,则x插入的位置是右边。
  • bisect.bisect(a,x,lo=0,hi=len(a),*,key=None),同bisect_right
# bisect_left Vs. bisect (bisect_right)
import bisect

nums = [1, 2, 2, 4]
i, j = bisect.bisect_left(nums, 2), bisect.bisect(nums, 2)
print(i)  # 输出1
print(j)  # 输出3

可见,针对上面给出的数组,想要插入2,使用bisect_left返回的索引值是1,使用bisect(bisect_right)返回的索引值是3。如果指定了lo和hi的话,那么返回的就是在这个范围内的索引。如下面的例子所示。

# 指定lo和hi
import bisect

nums = [1, 2, 2, 2, 2, 4]
i = bisect.bisect_left(nums, 2, 3)
print(i)  # 输出为3

如果不指定lo=3的话,返回的索引应该是1。指定lo=3后,返回的索引为3。

关键字key指定了一个方法,这个方法会接受当前数组中的中间值mid(因为二分查找就是从中间值开始的)作为其参数,然后返回一个值val,val用于跟x比较。

# 指定key值
import bisect

nums = [1, 2, 3, 4, 6, 8]

def divide(mid):
    print('mid: ' + str(mid))
    return mid // 2

i = bisect.bisect_left(nums, 5, key=divide)
print(i)

上面的例子中定义了一个divide方法。那么bisect_left方法的执行顺序是这样的:

  • nums中的中间值mid=4, divide(mid)方法返回值为2
  • 5>2,则查找nums的右子数组,即[6,8]
  • [6,8]的中间值是mid=8, divide(mid)方法返回值为4
  • 5>4,则继续查找右子数组,可是已经没有右子数组了,则返回索引值为6.

2.2 bisect.insort*()方法

  • bisect.insort_left(a,x,lo=0,hi=len(a),*,key=None),在有序数组a中[lo,hi]区间内查找x插入的位置,返回的是索引值。如果a中有跟x相同的元素,则x插入的位置是最左边,key指定了一个单参数的方法,该方法的返回值作为与k比较的基准。
  • bisect.insort_right(a,x,lo=0,hi=len(a),*,key=None),在有序数组a中[lo,hi]区间内查找x插入的位置,返回索引值。如果a中有跟x相同的元素,则x插入的位置是最右边。
  • bisect.insort(a,x,lo=0,hi=len(a),*,key=None),同insort_right。
# bisect.insort_left
import bisect

nums = [1, 2, 3, 4, 6, 8]
bisect.insort_left(nums, 5)
print(nums)
# [1, 2, 3, 4, 5, 6, 8]

值得注意的是,insort方法中的key和bisect方法中的key指定的方法针对的对象是不同的

# bisect.insort_left with key
import bisect

nums = [1, 2, 3, 4, 6, 8]
def divide(mid):
    print('mid: ' + str(mid))
    return mid // 2
bisect.insort_left(nums, 5, key=divide)

可见,key指定的方法的参数是针对x的。也就是说insort_left方法的执行顺序是这样的:

  • mid=x=5,返回的值是2,也就是divide(x)
  • mid是数组的中间值,即mid=4, divide方法返回的值是2
  • divide(x)==2,则查找左子数组
  • 中间值为2,mid=2, divide方法返回的值是1
  • divide(x)>1,则查找右子数组
  • 中间值为3,mid=3, divide方法的返回值是1
  • divide(x)>1,则查找右子数组
  • 没有右子数组了,则插入位置的索引为3,得到了插入5之后的数组为[1,2,3,5,4,6,8]

3.python中的二分查找

3.1 标准的二分查找

class BinarySearch:
    # 标准的二分查找,找不到返回-1
    def binsearch(self, nums, target):
        lo, hi = 0, len(nums) - 1
        while lo <= hi:
            mid = lo + (hi - lo) // 2
            if nums[mid] == target:
                return mid
            elif nums[mid] > target:
                hi = mid - 1
            else:  # nums[mid] < target:
                lo = mid + 1
        return -1

3.2 查找第一个>=target的元素索引

class BinarySearch:
    # 查找第一个>=target的元素索引,找不到返回数组长度
    def lowerbound(self, nums, target):
        lo, hi = 0, len(nums) - 1
        pos = len(nums)  # 找不到
        while lo < hi:
            mid = lo + (hi - lo) // 2
            if nums[mid] >= target:
                hi = mid
            else:  # nums[mid] < target:
                lo = mid + 1
        if nums[lo] >= target:  # lo:要找的元素索引
            pos = lo
        return pos

3.3 查找第一个>target的元素索引

class BinarySearch:
    # 查找第一个>target的元素索引,找不到返回数组长度
    def upperbound(self, nums, target):
        lo, hi = 0, len(nums) - 1
        pos = len(nums)  # 找不到
        while lo < hi:
            mid = lo + (hi - lo) // 2
            if nums[mid] > target:
                hi = mid
            else:  # nums[mid] <= target:
                lo = mid + 1
        if nums[lo] > target:  # lo:要找的元素索引
            pos = lo
        return pos

4.二分查找的变形与 bisect 模块的关系

  • 二分查找中的 lowerbound(nums, target) 等价于 bisect.bisect_left(a,x, lo=0, hi=len(a))
  • 二分查找中的upperbound(nums, target) 等价于 bisect.bisect_right(a,x, lo=0, hi=len(a)) 或者bisect.bisect(a,x, lo=0, hi=len(a))

到此这篇关于python中的bisect模块与二分查找详情的文章就介绍到这了,更多相关python bisect模块 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python游戏开发实例之graphics实现AI五子棋

    Python游戏开发实例之graphics实现AI五子棋

    五子棋是经典的棋牌类游戏,很多人都玩过,那么如何用Python实现五子棋呢,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-11-11
  • 基于keras中的回调函数用法说明

    基于keras中的回调函数用法说明

    这篇文章主要介绍了基于keras中的回调函数用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • 在Django中编写模版节点及注册标签的方法

    在Django中编写模版节点及注册标签的方法

    这篇文章主要介绍了在Django中编写模版节点及注册标签的方法,Django是Python各式各样的高人气框架中最为著名的一个,需要的朋友可以参考下
    2015-07-07
  • 玩转python爬虫之URLError异常处理

    玩转python爬虫之URLError异常处理

    这篇文章主要介绍了python爬虫的URLError异常处理,详细探寻一下URL\HTTP异常处理的相关内容,通过一些具体的实例来分析一下,非常的简单,但是却很实用,感兴趣的小伙伴们可以参考一下
    2016-02-02
  • python代码实现小程序登录流程时序总结

    python代码实现小程序登录流程时序总结

    这篇文章主要为大家介绍了python代码实现小程序的登录案例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪
    2022-04-04
  • Python基于随机采样一至性实现拟合椭圆(优化版)

    Python基于随机采样一至性实现拟合椭圆(优化版)

    这篇文章主要对上一版的Python基于随机采样一至性实现拟合椭圆的优化,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的可以了解一下
    2022-11-11
  • Python OpenCV中的图像处理物体跟踪效果

    Python OpenCV中的图像处理物体跟踪效果

    我们知道怎样将一幅图像从 BGR 转换到 HSV 了,我们可以利用这一点来提取带有某个特定颜色的物体,这篇文章主要介绍了Python OpenCV中的图像处理物体跟踪,需要的朋友可以参考下
    2023-08-08
  • Python方法的延迟加载的示例代码

    Python方法的延迟加载的示例代码

    本篇文章主要介绍了Python方法的延迟加载的示例代码,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-12-12
  • Python操控mysql批量插入数据的实现方法

    Python操控mysql批量插入数据的实现方法

    这篇文章主要介绍了Python操控mysql批量插入数据的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-10-10
  • 简单的连接MySQL与Python的Bottle框架的方法

    简单的连接MySQL与Python的Bottle框架的方法

    这篇文章主要介绍了简单的连接MySQL与Python的Bottle框架的方法,主要基于mysql-connector插件,需要的朋友可以参考下
    2015-04-04

最新评论