pandas中字典和dataFrame的相互转换
一、字典转dataFrame
1、字典转dataFrame比较简单,直接给出示例:
import pandas as pd dic = { 'name':['张三','李四','王二','麻子','小红','小兰','小玉','小强','小娟','小明'], 'num':[802,807,801,803,806,805,808,809,800,804], 'height': [183, 161, 163, 163, 156, 186, 184, 154, 153, 174], 'weight': [87, 60, 71, 74, 45, 50, 47, 67, 49, 70], 'gender': ['男', '男', '男', '男', '女', '女', '女', '男', '女', '男'], 'age': [25, 30, 25, 26, 27, 20, 23, 26, 30, 30] } df=pd.DataFrame(dic) print(df)
结果:
二、dataFrame转字典
1、DataFrame.to_dict() 函数介绍
pandas中经常用的是 DataFrame.to_dict() 函数将dataFrame转化为字典类型(字典的查询速度很快)
函数DataFrame.to_dict(orient=‘dict’, into=<class ‘dict’>)
- orient =‘dict’,是函数默认的,转化后的字典形式:{column(列名) : {index(行名) : value(值)}};
- orient =‘list’ ,转化后的字典形式:{column(列名) :{[values](值)}};
- orient =‘series’ ,转化后的字典形式:{column(列名) : Series (values) (值)};
- orient =‘split’ ,转化后的字典形式:{‘index’ : [index],‘columns’ :[columns],’data‘ : [values]};
- orient =‘records’ ,转化后是 list形式:[{column(列名) :value(值)}…{column:value}];
- orient =‘index’ ,转化后的字典形式:{index(值) :{column(列名) : value(值)}};
dataFrame.to_dict() 结果默认 index 是 key ,其他字段是和 index 对应的 value
2、orient =‘dict’
orient =‘dict’ 是函数默认的,转化后的字典形式:{column(列名) : {index(行名) : value(值)}}
dic1 = df.to_dict() print(dic1)
结果:
{
'name': {0: '张三', 1: '李四', 2: '王二', 3: '麻子', 4: '小红', 5: '小兰', 6: '小玉', 7: '小强', 8: '小娟', 9: '小明'},
'num': {0: 802, 1: 807, 2: 801, 3: 803, 4: 806, 5: 805, 6: 808, 7: 809, 8: 800, 9: 804},
'height': {0: 183, 1: 161, 2: 163, 3: 163, 4: 156, 5: 186, 6: 184, 7: 154, 8: 153, 9: 174},
'weight': {0: 87, 1: 60, 2: 71, 3: 74, 4: 45, 5: 50, 6: 47, 7: 67, 8: 49, 9: 70},
'gender': {0: '男', 1: '男', 2: '男', 3: '男', 4: '女', 5: '女', 6: '女', 7: '男', 8: '女', 9: '男'},
'age': {0: 25, 1: 30, 2: 25, 3: 26, 4: 27, 5: 20, 6: 23, 7: 26, 8: 30, 9: 30}
}
3、 orient =‘list’
orient =‘list’ ,转化后的字典形式:{column(列名) :{[values](值)}};
dic1 = df.to_dict('list') print(dic1)
结果:
{
'name': ['张三', '李四', '王二', '麻子', '小红', '小兰', '小玉', '小强', '小娟', '小明'],
'num': [802, 807, 801, 803, 806, 805, 808, 809, 800, 804],
'height': [183, 161, 163, 163, 156, 186, 184, 154, 153, 174],
'weight': [87, 60, 71, 74, 45, 50, 47, 67, 49, 70],
'gender': ['男', '男', '男', '男', '女', '女', '女', '男', '女', '男'],
'age': [25, 30, 25, 26, 27, 20, 23, 26, 30, 30]
}
4、orient =‘series’
orient =‘series’ ,转化后的字典形式:{column(列名) : Series (values) (值)}
dic1 = df.to_dict('series') print(dic1)
结果:
{
'name':
0 张三
1 李四
2 王二
3 麻子
4 小红
5 小兰
6 小玉
7 小强
8 小娟
9 小明
Name: name, dtype: object,
'num':
0 802
1 807
2 801
3 803
4 806
5 805
6 808
7 809
8 800
9 804
Name: num, dtype: int64,
'height':
0 183
1 161
2 163
3 163
4 156
5 186
6 184
7 154
8 153
9 174
Name: height, dtype: int64,
'weight':
0 87
1 60
2 71
3 74
4 45
5 50
6 47
7 67
8 49
9 70
Name: weight, dtype: int64,
'gender':
0 男
1 男
2 男
3 男
4 女
5 女
6 女
7 男
8 女
9 男
Name: gender, dtype: object,
'age':
0 25
1 30
2 25
3 26
4 27
5 20
6 23
7 26
8 30
9 30
Name: age, dtype: int64}
5、orient =‘split’
orient =‘split’ ,转化后的字典形式:{‘index’ : [index],‘columns’ :[columns],’data‘ : [values]}
{'index': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
'columns': ['name', 'num', 'height', 'weight', 'gender', 'age'],
'data': [
['张三', 802, 183, 87, '男', 25],
['李四', 807, 161, 60, '男', 30],
['王二', 801, 163, 71, '男', 25],
['麻子', 803, 163, 74, '男', 26],
['小红', 806, 156, 45, '女', 27],
['小兰', 805, 186, 50, '女', 20],
['小玉', 808, 184, 47, '女', 23],
['小强', 809, 154, 67, '男', 26],
['小娟', 800, 153, 49, '女', 30],
['小明', 804, 174, 70, '男', 30]
]
}
6、orient =‘records’
orient =‘records’ ,转化后是 list形式:[{column(列名) :value(值)}…{column:value}]
dic1 = df.to_dict('records') print(dic1)
结果:
[
{'name': '张三', 'num': 802, 'height': 183, 'weight': 87, 'gender': '男', 'age': 25},
{'name': '李四', 'num': 807, 'height': 161, 'weight': 60, 'gender': '男', 'age': 30},
{'name': '王二', 'num': 801, 'height': 163, 'weight': 71, 'gender': '男', 'age': 25},
{'name': '麻子', 'num': 803, 'height': 163, 'weight': 74, 'gender': '男', 'age': 26},
{'name': '小红', 'num': 806, 'height': 156, 'weight': 45, 'gender': '女', 'age': 27},
{'name': '小兰', 'num': 805, 'height': 186, 'weight': 50, 'gender': '女', 'age': 20},
{'name': '小玉', 'num': 808, 'height': 184, 'weight': 47, 'gender': '女', 'age': 23},
{'name': '小强', 'num': 809, 'height': 154, 'weight': 67, 'gender': '男', 'age': 26},
{'name': '小娟', 'num': 800, 'height': 153, 'weight': 49, 'gender': '女', 'age': 30},
{'name': '小明', 'num': 804, 'height': 174, 'weight': 70, 'gender': '男', 'age': 30}
]
7、orient =‘index’
orient =‘index’ ,转化后的字典形式:{index(值) :{column(列名) : value(值)}}
dic1 = df.to_dict('index') print(dic1)
结果:
{
0: {'name': '张三', 'num': 802, 'height': 183, 'weight': 87, 'gender': '男', 'age': 25},
1: {'name': '李四', 'num': 807, 'height': 161, 'weight': 60, 'gender': '男', 'age': 30},
2: {'name': '王二', 'num': 801, 'height': 163, 'weight': 71, 'gender': '男', 'age': 25},
3: {'name': '麻子', 'num': 803, 'height': 163, 'weight': 74, 'gender': '男', 'age': 26},
4: {'name': '小红', 'num': 806, 'height': 156, 'weight': 45, 'gender': '女', 'age': 27},
5: {'name': '小兰', 'num': 805, 'height': 186, 'weight': 50, 'gender': '女', 'age': 20},
6: {'name': '小玉', 'num': 808, 'height': 184, 'weight': 47, 'gender': '女', 'age': 23},
7: {'name': '小强', 'num': 809, 'height': 154, 'weight': 67, 'gender': '男', 'age': 26},
8: {'name': '小娟', 'num': 800, 'height': 153, 'weight': 49, 'gender': '女', 'age': 30},
9: {'name': '小明', 'num': 804, 'height': 174, 'weight': 70, 'gender': '男', 'age': 30}
}
8、指定列为key生成字典的实现步骤(按行)
1、 set_index用于将想设置为key的列设置为数据框索引
df.set_index("name", drop=True, inplace=True) # 其中 drop=True去重,inplace=True在原数据上更改
结果:
2、使用orient=index参数将索引用作字典键。
dictionary = df.to_dict(orient="index") print(dictionary)
结果
{
'张三': {'num': 802, 'height': 183, 'weight': 87, 'gender': '男', 'age': 25},
'李四': {'num': 807, 'height': 161, 'weight': 60, 'gender': '男', 'age': 30},
'王二': {'num': 801, 'height': 163, 'weight': 71, 'gender': '男', 'age': 25},
'麻子': {'num': 803, 'height': 163, 'weight': 74, 'gender': '男', 'age': 26},
'小红': {'num': 806, 'height': 156, 'weight': 45, 'gender': '女', 'age': 27},
'小兰': {'num': 805, 'height': 186, 'weight': 50, 'gender': '女', 'age': 20},
'小玉': {'num': 808, 'height': 184, 'weight': 47, 'gender': '女', 'age': 23},
'小强': {'num': 809, 'height': 154, 'weight': 67, 'gender': '男', 'age': 26},
'小娟': {'num': 800, 'height': 153, 'weight': 49, 'gender': '女', 'age': 30},
'小明': {'num': 804, 'height': 174, 'weight': 70, 'gender': '男', 'age': 30}
}
3、将步骤1、2合起来写也可以,这里不修改源数据
dictionary = df.set_index("name", drop=True).to_dict(orient="index")
9、指定列为key,value生成字典的实现
1、指定一个列为key,一列为value
dictionary = df.set_index("name")["num"].to_dict() print(dictionary)
结果
{
'张三': 802,
'李四': 807,
'王二': 801,
'麻子': 803,
'小红': 806,
'小兰': 805,
'小玉': 808,
'小强': 809,
'小娟': 800,
'小明': 804
}
2、指定多个列为key,一列为value
dictionary = df.set_index(["name","num"])["weight"].to_dict() print(dictionary)
结果:
{
('张三', 802): 87,
('李四', 807): 60,
('王二', 801): 71,
('麻子', 803): 74,
('小红', 806): 45,
('小兰', 805): 50,
('小玉', 808): 47,
('小强', 809): 67,
('小娟', 800): 49,
('小明', 804): 70
}
3、指定一个列为key,多列为value
方法1(速度慢)
dictionary = {c0:[c1,c2] for c0,c1,c2 in zip(df['name'],df['num'],df['weight'])} print(dictionary)
方法2(速度快)
dictionary = df[["name",'num','weight']].set_index('name').T.to_dict('list') print(dictionary)
结果:
{
'张三': [802, 87],
'李四': [807, 60],
'王二': [801, 71],
'麻子': [803, 74],
'小红': [806, 45],
'小兰': [805, 50],
'小玉': [808, 47],
'小强': [809, 67],
'小娟': [800, 49],
'小明': [804, 70]
}
4、 指定多列为key,多列为value
dictionary = df[["name",'num','weight',"age"]].set_index(['name','num']).T.to_dict('list') print(dictionary)
结果:
{
('张三', 802): [87, 25],
('李四', 807): [60, 30],
('王二', 801): [71, 25],
('麻子', 803): [74, 26],
('小红', 806): [45, 27],
('小兰', 805): [50, 20],
('小玉', 808): [47, 23],
('小强', 809): [67, 26],
('小娟', 800): [49, 30],
('小明', 804): [70, 30]
}
参考https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_dict.html
总结
到此这篇关于pandas中字典和dataFrame相互转换的文章就介绍到这了,更多相关字典和dataFrame相互转换内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python实现读取SQLServer数据并插入到MongoDB数据库的方法示例
这篇文章主要介绍了Python实现读取SQLServer数据并插入到MongoDB数据库的方法,涉及Python同时进行SQLServer与MongoDB数据库的连接、查询、读取、写入等相关操作实现技巧,需要的朋友可以参考下2018-06-06浅谈numpy中函数resize与reshape,ravel与flatten的区别
这篇文章主要介绍了浅谈numpy中函数resize与reshape,ravel与flatten的区别介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-06-06Windows下的Jupyter Notebook 安装与自定义启动(图文详解)
这篇文章主要介绍了Windows下的Jupyter Notebook 安装与自定义启动(图文详解),需要的朋友可以参考下2018-02-02Python使用win32 COM实现Excel的写入与保存功能示例
这篇文章主要介绍了Python使用win32 COM实现Excel的写入与保存功能,结合实例形式分析了Python调用win32 COM组件针对Excel文件的读写与保存相关操作技巧,需要的朋友可以参考下2018-05-05解决List.append() 在 Python 中不起作用的问题
在 Python 中,我们通常使用 List.append() 方法向列表末尾添加元素,然而,在某些情况下,你可能会遇到 List.append() 方法不起作用的问题,本文将详细讨论这个问题并提供解决方法,需要的朋友可以参考下2023-06-06
最新评论