yolov5模型配置yaml文件详细讲解

 更新时间:2022年09月23日 10:32:39   作者:LaLaLaLaXFF  
YOLOV5模型配置文件存放在modules文件夹下,这里使用的是 yolov5s.yaml,下面这篇文章主要给大家介绍了关于yolov5模型配置yaml文件的相关资料,需要的朋友可以参考下

yolov5的代码模型构建是通过.yaml文件实现的,初次看上去会一头雾水,这里记录一下,也方便自己后面用到的时候查看。

以models/yolov5s.yaml为例

文件内容如下:

# Parameters
nc: 5  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

anchors:
  - [24,24,29,84,59,42]  # P3/8
  - [45,146,75,87,157,49]  # P4/16
  - [310,167,139,341,127,151]  # P5/32

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
   [-1, 3, C3, [1024, False]],  # 9
  ]

# YOLOv5 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

我们一个一个来解释:

  • 一些基本参数:
    • nc 数据集中物体的类别数
    • depth_multiple 控制网络深度的系数
    • width_multiple 控制网络宽度的系数
    • anchors 给不同尺度特征图分配的anchors,可以看到包含三个列表,表示给三个尺度分配,这三个尺度在[[17, 20, 23], 1, Detect, [nc, anchors]] 指明,分别是网络的第17、20和23层。注释P3/8是指输入下采样了23 = 8倍,我们也可以发现网络的第17层特征图为输入的1/8。
  • BackBone:
    骨干网络的定义,是一个列表,每一行表示一层。可以看到每一行是有4个元素的列表,[from, number, module, args]说明了这个4个元素的意思。
    • from 表示该层的输入从哪来。-1表示输入取自上一层,-2表示上两层,3表示第3层(从0开始数),[-1, 4]表示取自上一层和第4层,依次类推。。。网络层数的数法在注释里已经标出来了,从0开始,每一行表示一层,例如0-P1/2表示第0层,特征图尺寸为输入的1/21。
    • number 表示该层模块堆叠的次数,对于C3、BottleneckCSP等模块,表示其子模块的堆叠,具体细节可以查看源代码。当然最终的次数还要乘上depth_multiple系数。
    • module 表示该层的模块是啥。Conv就是卷积+BN+激活模块。所有的模块在 model/common.py 中都有定义。
    • args 表示输入到模块的参数。例如Conv:[128, 3, 2] 表示输出通道128,卷积核尺寸3,strid=2,当然最终的输出通道数还要乘上 width_multiple,对于其他模块,第一个参数值一般都是指输出通道数,具体细节可以看 model/common.py 中的定义。
  • Head
    规则和BackBone一毛一样,这里再解释一些最后一层:
    [[17, 20, 23], 1, Detect, [nc, anchors]] 表示把第17、20和23三层作为Detect模块的输入, [nc, anchors]是初始化Detect模块的参数。Detect模块在model/yolo.py中声明,相当于从模型中提出想要的层作为输入,转换为相应的检测头,其输出用来计算loss。

补充:模型 yaml 文件中第四参数解释

这里是对 backbone 和 head 超参数中第四个参数的理解

当第三个参数为 Focus 时,第四个参数中,第一个值为该模块中需要用到的通道数,第二个值为卷积核大小;

当第三个参数为 Conv 时,第四个参数中,第一个值为该模块中需要用到的通道数,第二个值为卷积核大小,第三个参数为步距大小;

当第三个参数为 BottleneckCSP 时,第四个参数中,第一个值是该模块用到的通道数;如果存在第二个参数,第二个参数:是否启用 shortcut 连接

当第三个参数为 SPP时,第四个参数就是 SPP 中需要用到的卷积核大小。

当第三个参数为 nn.Upsample时,就是 torch 中实现的上采样函数。

当第三个参数为 Concat时,第四个参数就是 concat 中拼接的维度。

当第三个参数为 Detect时,第四个参数中,第一个值为类别个数,第二个值为超参数 anchors 的值。

总结 

到此这篇关于yolov5模型配置yaml文件详细讲解的文章就介绍到这了,更多相关yolov5模型配置yaml文件内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • pytorch 实现删除tensor中的指定行列

    pytorch 实现删除tensor中的指定行列

    今天小编就为大家分享一篇pytorch 实现删除tensor中的指定行列,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • 基于Python实现拆分和合并GIF动态图

    基于Python实现拆分和合并GIF动态图

    这篇文章主要介绍了Python拆分和合并GIF动态图,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • python3正则提取字符串里的中文实例

    python3正则提取字符串里的中文实例

    今天小编就为大家分享一篇python3正则提取字符串里的中文实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01
  • Python画图练习案例分享

    Python画图练习案例分享

    这篇文章主要介绍了Python画图练习案例分享,文章基于Python实现各种画图,具有一定的参考价值,感兴趣的小伙伴可以参考一下
    2022-07-07
  • 运用Python巧妙处理Word文档的方法详解

    运用Python巧妙处理Word文档的方法详解

    大家平时在工作与学习中都会操作到Word文件格式,特别是很多数据的时候,靠人力去识别操作非常容易出错。今天就带大家用python来处理Word文件,感兴趣的可以了解一下
    2022-05-05
  • python自动化调用百度api解决验证码

    python自动化调用百度api解决验证码

    这篇文章主要介绍了python自动化调用百度api解决验证码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • Python3爬虫爬取百姓网列表并保存为json功能示例【基于request、lxml和json模块】

    Python3爬虫爬取百姓网列表并保存为json功能示例【基于request、lxml和json模块】

    这篇文章主要介绍了Python3爬虫爬取百姓网列表并保存为json功能,涉及Python基于request、lxml和json模块的Request请求与响应数据处理相关操作技巧,需要的朋友可以参考下
    2018-12-12
  • python如何提取xml指定内容

    python如何提取xml指定内容

    这篇文章主要介绍了python如何提取xml指定内容,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-01-01
  • 基于pytorch实现对图片进行数据增强

    基于pytorch实现对图片进行数据增强

    图像数据增强是一种在训练机器学习和深度学习模型时常用的策略,尤其是在计算机视觉领域,具体而言,它通过创建和原始图像稍有不同的新图像来扩大训练集,本文给大家介绍了如何基于pytorch实现对图片进行数据增强,需要的朋友可以参考下
    2024-01-01
  • Python包装异常处理方法

    Python包装异常处理方法

    这篇文章主要介绍了Python包装异常处理方法,相比java,python的异常和java中不同,python主要是防止程序异常被中止。一旦被catch后它还行往下执行,本文就分享python相关的异常处理方法,需要的小伙伴可以参考一下
    2022-06-06

最新评论