python sklearn与pandas实现缺失值数据预处理流程详解

 更新时间:2022年09月26日 15:12:25   作者:talle2021  
对于缺失值的处理,主要配合使用sklearn.impute中的SimpleImputer类、pandas、numpy。其中由于pandas对于数据探索、分析和探查的支持较为良好,因此围绕pandas的缺失值处理较为常用

注:代码用 jupyter notebook跑的,分割线线上为代码,分割线下为运行结果

1.导入库生成缺失值

通过pandas生成一个6行4列的矩阵,列名分别为'col1','col2','col3','col4',同时增加两个缺失值数据。

import  numpy as np 
import pandas as pd
from sklearn.impute import SimpleImputer
#生成缺失数据
df=pd.DataFrame(np.random.randn(6,4),columns=['col1','col2','col3','col4']) #生成一份数据
#增加缺失值
df.iloc[1:2,1]=np.nan
df.iloc[4,3]=np.nan
df

        col1        col2        col3        col4
0    -0.480144    1.463995    0.454819    -1.531419
1    -0.418552       NaN        -0.931259    -0.534846
2    -0.028083    -0.420394    0.925346    0.975792
3    -0.144064    -0.811569    -0.013452    0.110480
4    -0.966490    -0.822555    0.228038    NaN
5    -0.017370    -0.538245    -2.083904    0.230733

2.查看哪些值缺失(第2行第2列,第5行第4列)

nan_all=df.isnull() #获得所有数据中的nan
nan_all

    col1    col2    col3    col4
0    False    False    False    False
1    False    True    False    False
2    False    False    False    False
3    False    False    False    False
4    False    False    False    True
5    False    False    False    False

3 any()方法来查找含有至少1个缺失值的列,all()方法来查找全部缺失值的列

#使用any方法
nan_col1=df.isnull().any() #获得含有nan的列
print(nan_col1)

col1    False
col2     True
col3    False
col4     True
dtype: bool

#使用all方法
nan_col2=df.isnull().all() #获得全部为nan的列
print(nan_col2)

col1    False
col2    False
col3    False
col4    False
dtype: bool

4.法一:直接丢弃缺失值

df1=df.dropna()#直接丢弃含有nan的行记录
df1

col1    col2    col3    col4
0    -0.480144    1.463995    0.454819    -1.531419
2    -0.028083    -0.420394    0.925346    0.975792
3    -0.144064    -0.811569    -0.013452    0.110480
5    -0.017370    -0.538245    -2.083904    0.230733

5.法二:使用sklearn将缺失值替换为特定值

首先通过SimpleImputer创建一个预处理对象,缺失值替换方法默认用均值替换,及strategy=mean,还可以使用中位数median,众数most_frequent进行替换,接着使用预处理对象的fit_transform对df进行处理,代码如下:

#使用sklearn将缺失值替换为特定值
nan_mean=SimpleImputer(strategy='mean') #用均值填补
nan_median=SimpleImputer(strategy='median') #用中位数填补
nan_0=SimpleImputer(strategy='constant',fill_value=0) #用0填补
#应用模型
nan_mean_result=nan_mean.fit_transform(df)
nan_median_result=nan_median.fit_transform(df)
nan_0_result=nan_0.fit_transform(df)
print(nan_mean_result)
print(nan_median_result)
print(nan_0_result)

 [-0.48014389  1.46399462  0.45481856 -1.53141863]
 [-0.4185523  -0.22575384 -0.93125874 -0.53484561]
 [-0.02808329 -0.42039426  0.925346    0.97579191]
 [-0.14406438 -0.81156913 -0.0134516   0.11048025]
 [-0.96649028 -0.82255505  0.22803842 -0.14985173]
 [-0.01737047 -0.53824538 -2.0839036   0.23073341]
 
 [-0.48014389  1.46399462  0.45481856 -1.53141863]
 [-0.4185523  -0.53824538 -0.93125874 -0.53484561]
 [-0.02808329 -0.42039426  0.925346    0.97579191]
 [-0.14406438 -0.81156913 -0.0134516   0.11048025]
 [-0.96649028 -0.82255505  0.22803842  0.11048025]
 [-0.01737047 -0.53824538 -2.0839036   0.23073341]
 
 [-0.48014389  1.46399462  0.45481856 -1.53141863]
 [-0.4185523   0.         -0.93125874 -0.53484561]
 [-0.02808329 -0.42039426  0.925346    0.97579191]
 [-0.14406438 -0.81156913 -0.0134516   0.11048025]
 [-0.96649028 -0.82255505  0.22803842  0.        ]
 [-0.01737047 -0.53824538 -2.0839036   0.23073341]

6.法三:使用pandas将缺失值替换为特定值

pandas对缺失值处理方法是df.fillna(),该方法的两个主要参数是value和method。前者通过固定或手动指定的值替换缺失值,后者使用pandas提供的方法替换缺失值。以下是method支持的方法:

(1)pad和ffill:使用前面的值替换缺失值

(2)backfill和bfill:使用后面的值替换缺失值

(3)大多数情况下用均值、众数、中位数的方法较为常用

#使用pandas将缺失值替换为特定值
nan_result_pd1=df.fillna(method='backfill')
nan_result_pd2=df.fillna(method='bfill',limit=1)#用后面的值替换缺失值,限制每列只能替换一个缺失值
nan_result_pd3=df.fillna(method='pad')
nan_result_pd4=df.fillna(0)
nan_result_pd5=df.fillna({'col2':1.1,'col4':1.2}) #手动指定两个缺失值分别为1.1,1.2
nan_result_pd6=df.fillna(df.mean()['col2':'col4'])
nan_result_pd7=df.fillna(df.median()['col2':'col4'])
print(nan_result_pd1)
print(nan_result_pd2)
print(nan_result_pd3)
print(nan_result_pd4)
print(nan_result_pd5)
print(nan_result_pd6)
print(nan_result_pd7)

  col1      col2      col3      col4
0 -0.480144  1.463995  0.454819 -1.531419
1 -0.418552 -0.420394 -0.931259 -0.534846
2 -0.028083 -0.420394  0.925346  0.975792
3 -0.144064 -0.811569 -0.013452  0.110480
4 -0.966490 -0.822555  0.228038  0.230733
5 -0.017370 -0.538245 -2.083904  0.230733
       col1      col2      col3      col4
0 -0.480144  1.463995  0.454819 -1.531419
1 -0.418552 -0.420394 -0.931259 -0.534846
2 -0.028083 -0.420394  0.925346  0.975792
3 -0.144064 -0.811569 -0.013452  0.110480
4 -0.966490 -0.822555  0.228038  0.230733
5 -0.017370 -0.538245 -2.083904  0.230733
       col1      col2      col3      col4
0 -0.480144  1.463995  0.454819 -1.531419
1 -0.418552  1.463995 -0.931259 -0.534846
2 -0.028083 -0.420394  0.925346  0.975792
3 -0.144064 -0.811569 -0.013452  0.110480
4 -0.966490 -0.822555  0.228038  0.110480
5 -0.017370 -0.538245 -2.083904  0.230733
       col1      col2      col3      col4
0 -0.480144  1.463995  0.454819 -1.531419
1 -0.418552  0.000000 -0.931259 -0.534846
2 -0.028083 -0.420394  0.925346  0.975792
3 -0.144064 -0.811569 -0.013452  0.110480
4 -0.966490 -0.822555  0.228038  0.000000
5 -0.017370 -0.538245 -2.083904  0.230733
       col1      col2      col3      col4
0 -0.480144  1.463995  0.454819 -1.531419
1 -0.418552  1.100000 -0.931259 -0.534846
2 -0.028083 -0.420394  0.925346  0.975792
3 -0.144064 -0.811569 -0.013452  0.110480
4 -0.966490 -0.822555  0.228038  1.200000
5 -0.017370 -0.538245 -2.083904  0.230733
       col1      col2      col3      col4
0 -0.480144  1.463995  0.454819 -1.531419
1 -0.418552 -0.225754 -0.931259 -0.534846
2 -0.028083 -0.420394  0.925346  0.975792
3 -0.144064 -0.811569 -0.013452  0.110480
4 -0.966490 -0.822555  0.228038 -0.149852
5 -0.017370 -0.538245 -2.083904  0.230733
       col1      col2      col3      col4
0 -0.480144  1.463995  0.454819 -1.531419
1 -0.418552 -0.538245 -0.931259 -0.534846
2 -0.028083 -0.420394  0.925346  0.975792
3 -0.144064 -0.811569 -0.013452  0.110480
4 -0.966490 -0.822555  0.228038  0.110480
5 -0.017370 -0.538245 -2.083904  0.230733

另外,如果是直接替换为特定值,也可以考虑用pandas的replace功能,例如本示例可直接使用df.replace(np.nan,0),这种方法简单粗暴,但也能达到效果。当然replace的出现是为了解决各种替换用的,缺失值只是其中一种应用而已。

到此这篇关于python sklearn与pandas实现缺失值数据预处理流程详解的文章就介绍到这了,更多相关python 数据预处理内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • flask入门之文件上传与邮件发送示例

    flask入门之文件上传与邮件发送示例

    本篇文章主要介绍了flask入门之文件上传与邮件发送示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-07-07
  • Python 多线程并行执行的实现示例

    Python 多线程并行执行的实现示例

    本文主要介绍了Python 多线程并行执行的实现示例,通过使用threading和concurrent.futures模块可以进行实现,具有一定的参考价值,感兴趣的可以了解一下
    2024-07-07
  • 对python中xlsx,csv以及json文件的相互转化方法详解

    对python中xlsx,csv以及json文件的相互转化方法详解

    今天小编就为大家分享一篇对python中xlsx,csv以及json文件的相互转化方法详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • Django结合使用Scrapy爬取数据入库的方法示例

    Django结合使用Scrapy爬取数据入库的方法示例

    这篇文章主要介绍了Django结合使用Scrapy爬取数据入库的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-03-03
  • Python中的常见数据集打乱方法

    Python中的常见数据集打乱方法

    这篇文章主要介绍了Python中的常见数据集打乱方法,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-02-02
  • python导入坐标点的具体操作

    python导入坐标点的具体操作

    在本篇文章里小编给大家分享了关于python导入坐标点的具体操作步骤和图解,有需要的朋友们跟着学习下。
    2019-05-05
  • Python页面加载的等待方式总结

    Python页面加载的等待方式总结

    在本篇内容里小编给大家整理的是关于Python页面加载的等待方式总结内容,有需要的朋友们可以参考下。
    2021-02-02
  • 基于Python实现简易文档格式转换器

    基于Python实现简易文档格式转换器

    这篇文章主要介绍了基于Python和PyQT5实现简易的文档格式转换器,支持.txt/.xlsx/.csv格式的转换。感兴趣的小伙伴可以跟随小编一起学习一下
    2021-12-12
  • Python的数据结构与算法的队列详解(3)

    Python的数据结构与算法的队列详解(3)

    这篇文章主要为大家详细介绍了Python的队列,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-03-03
  • Python函数中4种参数的使用教程

    Python函数中4种参数的使用教程

    这篇文章主要介绍了Python函数中4种参数的使用包括必需的参数,关键字参数,缺省参数,不定长参数的相关介绍,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下
    2021-11-11

最新评论