Python实现常见数据格式转换的方法详解

 更新时间:2022年09月28日 16:18:20   作者:knighthood2001  
这篇文章主要为大家详细介绍了Python实现常见数据格式转换的方法,主要是xml_to_csv和csv_to_tfrecord,感兴趣的小伙伴可以了解一下

xml_to_csv

代码如下:

import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET

def xml_to_csv(path):
    xml_list = []
    for xml_file in glob.glob(path + '/*.xml'):
        tree = ET.parse(xml_file)
        root = tree.getroot()
        for member in root.findall('object'):
            value = (root.find('filename').text,
                     int(root.find('size')[0].text),
                     int(root.find('size')[1].text),
                     member[0].text,
                     int(member[4][0].text),
                     int(member[4][1].text),
                     int(member[4][2].text),
                     int(member[4][3].text)
                     )
            xml_list.append(value)
    column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
    xml_df = pd.DataFrame(xml_list, columns=column_name)
    return xml_df

def main():
    print(os.getcwd())
    # 结果为E:\python_code\crack\models_trainning
    # ToDo 根据自己实际目录修改
    # image_path = os.path.join(os.getcwd(), 'dataset/crack/test')  # 根据自己实际目录修改,或者使用下面的路径
    image_path = 'E:/python_code/crack/models_trainning/dataset/crack/test'
    print(image_path)
    xml_df = xml_to_csv(image_path)
    xml_df.to_csv('./dataset/crack/train/crack_test.csv', index=None)  # 根据自己实际目录修改
    print('Successfully converted xml to csv.')

main()

这里需要注意的是,这里的话我们只需要修改路径,就不需要在终端运行(每次需要先去该目录下)了,对于不玩linux的同学比较友好。

print(os.getcwd())

结果为E:\python_code\crack\models_trainning

image_path = os.path.join(os.getcwd(), 'dataset/crack/test')
image_path = 'E:/python_code/crack/models_trainning/dataset/crack/test'

以上两种图片路径方法都可以,一个采用的是os.path.join()进行路径拼接。

xml_df.to_csv('./dataset/crack/train/crack_test.csv', index=None) 

保存为csv的路径可以随意写

结果如下

csv_to_tfrecord

# -*- coding: utf-8-*-
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import

import os
import io
import pandas as pd
import tensorflow as tf
import tensorflow.compat.v1 as tf
from PIL import Image
from research.object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
FLAGS = flags.FLAGS


# 将分类名称转成ID号
def class_text_to_int(row_label):
    if row_label == 'crack':
        return 1
    # elif row_label == 'car':
    #     return 2
    # elif row_label == 'person':
    #     return 3
    # elif row_label == 'kite':
    #     return 4
    else:
        print('NONE: ' + row_label)
        # None


def split(df, group):
    data = namedtuple('data', ['filename', 'object'])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]


def create_tf_example(group, path):
    print(os.path.join(path, '{}'.format(group.filename)))
    with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = (group.filename + '.jpg').encode('utf8')
    image_format = b'jpg'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row['xmin'] / width)
        xmaxs.append(row['xmax'] / width)
        ymins.append(row['ymin'] / height)
        ymaxs.append(row['ymax'] / height)
        classes_text.append(row['class'].encode('utf8'))
        classes.append(class_text_to_int(row['class']))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(filename),
        'image/source_id': dataset_util.bytes_feature(filename),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example


def main(csv_input, output_path, imgPath):
    writer = tf.python_io.TFRecordWriter(output_path)
    path = imgPath
    examples = pd.read_csv(csv_input)
    grouped = split(examples, 'filename')
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())

    writer.close()
    print('Successfully created the TFRecords: {}'.format(output_path))


if __name__ == '__main__':
    # ToDo 修改相应目录
    imgPath = r'E:\python_code\crack\models_trainning\dataset\crack\test'
    output_path = 'dataset/crack/test/crack_test.record'
    csv_input = 'dataset/crack/test/crack_test.csv'
    main(csv_input, output_path, imgPath)

如xml_to_csv类似,只要把路径改好即可

imgPath是图片所在文件夹路径

output_path是tfrecord生成的路径

csv_iinput是使用的csv的路径

当然,你可能会出现下面报错,起初笔者还以为是编码问题,可是始终未能解决。后来仔细检查发现,是自己路径搞错了,因此大家出现这个错误的时候,检查一下路径先。

到此这篇关于Python实现常见数据格式转换的方法详解的文章就介绍到这了,更多相关Python数据格式转换内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python PyCryptodome库介绍与实例教程

    Python PyCryptodome库介绍与实例教程

    PyCryptodome提供了丰富的加密功能,可以满足多种安全需求,本文介绍了几个常见的使用场景,包括对称加密、非对称加密、哈希函数和消息认证码,感兴趣的朋友跟随小编一起看看吧
    2024-07-07
  • 动态创建类实例代码

    动态创建类实例代码

    Python中要创建一个类的实例,要首先导入该类或者该类所属的模块。
    2009-10-10
  • Python使用pyserial进行串口通信的实例

    Python使用pyserial进行串口通信的实例

    今天小编就为大家分享一篇Python使用pyserial进行串口通信的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python基于pyopencv人脸识别并绘制GUI界面

    Python基于pyopencv人脸识别并绘制GUI界面

    本文详细讲解了Python基于pyopencv人脸识别并绘制GUI界面,文中通过示例代码介绍的非常详细。对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-12-12
  • 教你用Python代码实现合并excel文件

    教你用Python代码实现合并excel文件

    近几天一直因为excel文件太多太杂的原因苦恼,今天特地整理了本篇文章,文章介绍的非常详细,对正在学习python的小伙伴们有很好地帮助,需要的朋友可以参考下
    2021-05-05
  • Python的10道简单测试题(含答案)

    Python的10道简单测试题(含答案)

    这篇文章主要介绍了Python的10道简单测试题(含答案),学习了一段时间python的小伙伴来做几道测试题检验一下自己的学习成果吧
    2023-04-04
  • 使用 Python 在京东上抢口罩的思路详解

    使用 Python 在京东上抢口罩的思路详解

    受疫情影响全民真的在抢口罩,而且还是抢不到的那种。这篇文章主要介绍了用 Python 在京东上抢口罩的实例代码,代码简单易懂,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-02-02
  • Python找出微信上删除你好友的人脚本写法

    Python找出微信上删除你好友的人脚本写法

    在本篇文章中我们给大家分享了Python找出微信上删除你好友的人脚本写法以及相关实例代码,有需要的朋友们参考下。
    2018-11-11
  • 利用python/R语言绘制圣诞树实例代码

    利用python/R语言绘制圣诞树实例代码

    圣诞节快到了,分别用R和Python绘制了圣诞树祝你们圣诞节快乐,所以下面这篇文章主要给大家介绍了关于如何利用python/R绘制圣诞树的相关资料,需要的朋友可以参考下
    2021-12-12
  • 将Python文件打包成.EXE可执行文件的方法

    将Python文件打包成.EXE可执行文件的方法

    目前有好几种方法可以将python文件打包成exe应用程序文件,例如py2exe,pyinstaller等,比较下来,还是觉得pyinstaller使用起来比较简单。
    2019-08-08

最新评论