Python+OpenCV之直方图均衡化详解
直方图均衡化
直方图均衡化(Histogram Equalization)是一种增强图像对比度(Image Contrast)的方法,其主要思想是将一副图像的直方图分布变成近似均匀分布,从而增强图像的对比度。
scenery.png
原图(下载):
import cv2 # opencv读取的格式是BGR import numpy as np import matplotlib.pyplot as plt # Matplotlib是RGB # %matplotlib inline def cv_show(img, name): cv2.imshow(name, img) cv2.waitKey() cv2.destroyAllWindows() img = cv2.imread('DataPreprocessing/img/scenery.png', 0) # 0表示灰度图 hist = cv2.calcHist([img], [0], None, [256], [0, 256]) print(hist.shape) plt.hist(img.ravel(), 256) plt.show()
转为灰度图后,整张图片像素分布的直方图结果:
画出三通道的直方图分布:
color = ('b', 'g', 'r') for i, col in enumerate(color): histr = cv2.calcHist([img], [i], None, [256], [0, 256]) plt.plot(histr, color=col) plt.xlim([0, 256])
直方图均衡化处理:
img = cv2.imread('DataPreprocessing/img/scenery.png', 0) equ = cv2.equalizeHist(img) plt.hist(equ.ravel(), 256) plt.show() # cv_show(equ, "equ")
经过直方图均衡化处理后的像素分布:
自适应直方图均衡化
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) res_clahe = clahe.apply(img) res = np.hstack((img, equ, res_clahe)) cv2.imwrite("res_scenery.png", res) cv_show(res, 'res')
展示所有的结果(原图 - - - 直方图均衡化 - - - 自适应直方图均衡化):
到此这篇关于Python+OpenCV之直方图均衡化详解的文章就介绍到这了,更多相关Python OpenCV直方图均衡化内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
Python+Matplotlib绘制带有对角线的散点图的示例代码
Matplotlib 是一个用于绘制二维图形的 Python 库,这篇文章主要介绍了Python如何利用Matplotlib绘制带有对角线的散点图,需要的小伙伴可以参考一下2023-06-06Python中线程threading.Thread的使用详解
python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用。本文将为大家详细介绍一下python中的线程threading.Thread()的使用,需要的可以参考一下2022-07-07python-pymysql如何实现更新mysql表中任意字段数据
这篇文章主要介绍了python-pymysql如何实现更新mysql表中任意字段数据问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教2023-05-05
最新评论