Python灰度变换中位图切割分析实现

 更新时间:2022年10月18日 17:05:24   作者:Henry_zs  
灰度变换是指根据某种目标条件按一定变换关系逐点改变源图像中每个像素灰度值的方法。目的是改善画质,使图像显示效果更加清晰。图像的灰度变换处理是图像增强处理技术中的一种非常基础、直接的空间域图像处理方法,也是图像数字化软件和图像显示软件的一个重要组成部分

1. 介绍

图像的像素值是由比特组成的。例如一副256级灰度图像中,图像是由8 bit组成。

与之前对比度拉伸的区别是,之前我们主要强调在某一范围的灰度值作为我们能感兴趣的目标将其变亮或者变暗。而位图切割主要强调每个bit对图像的贡献,通过方法将不同位的灰度值值取出来还原成图像。

如图所示,一副8 bit图像,我们可以将图像分割成8个,将每个图像对应的比特位取出构建成一副新的图像

2. 实现方法

例如图像某一点的像素值为100,对应的二进制为0110 0100

我们的目标很简单,就是将第1位的0取出来(这里不要把100看成一个数,将他想象成一幅图像的所有点,我们要把图像像素对应二进制的第一位全部取出,组成一副新的图像)以此类推...

最后为了防止取出的灰度值过暗,我们将他映射到最大值255

这里提供两种方法实现:

  • 将图像的二进制和对应的 8bit 相与(0000 0000),例如取第0个比特平面的话图像就和(0000 0001)与。所以结果只能是0000 000X (X取决于图像的最低位),如果X = 1的话,我们认为这个点的像素在 0bit平面有值,将它映射为255;否则为0
  • 图像像素除以 2^n (n代表第n个比特平面,n从0开始,为了满足编程下标从0开始计数),如果商的整数部分为1的话,说明这个点在n比特平面有值,映射为255;否则为0

注:

  • 这里映射为255为了突出对应比特平面的亮度,否则就算再最高的比特平面,最大值也只有128灰度值(因为最高的是第7为,2^7 = 128)
  • 如果利用第一种与的方法,但是最后不要拉伸成255,只是把与的结果作为新的图像输出。那么只需要将8副图像全部加起来就可以还原图像

3. code

这里用第二种÷的方法实现

如果用第一种与的方法的话,只需要将中间的代码段替换成后面的就行,结果是一样的

import cv2
import numpy as np
gray = cv2.imread('./img.jpg',0)
img = cv2.resize(gray,None,fx = 0.5,fy = 0.5,interpolation=cv2.INTER_AREA)  #缩小图像
group = []   # 存放每一层的图像
for n in range(8):
    dst = np.zeros_like(img)
    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            ret = img[i][j] // pow(2,n)       #ret = img[i][j] & pow(2,n)
            if (ret % 2) ==1:                 # if (ret ==pow(2,n)):
                dst[i][j] = 255
            else:
                dst[i][j] = 0
    group.append(dst)
cv2.imshow('0-3',np.hstack((i for i in group[:4])))
cv2.imshow('4-7',np.hstack((i for i in group[4:])))
cv2.waitKey()
cv2.destroyAllWindows()

输入图像:

输出结果:

4. 比特平面重建图像

如果还原图像的话,我们再输出图像的时候,就不要映射到255,之间将图像与比特平面相与的结果输出即可

import cv2
import numpy as np
gray = cv2.imread('./img.jpg',0)
img = cv2.resize(gray,None,fx = 0.5,fy = 0.5,interpolation=cv2.INTER_AREA)  #缩小图像
group = []   # 存放每一层的图像
for n in range(8):
    dst = np.zeros_like(img)
    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            ret = img[i][j] & pow(2,n)
            dst[i][j] = ret   # 将与的结果作为图像
    group.append(dst)
cv2.imshow('0-3',np.hstack((i for i in group[:4])))
cv2.imshow('4-7',np.hstack((i for i in group[4:])))
a = np.zeros_like(img)   # 还原
for i in group:
    a += i
cv2.imshow('img',a)
cv2.waitKey()
cv2.destroyAllWindows()

输出比特平面:

所以图像相加为:

到此这篇关于Python灰度变换中位图切割分析实现的文章就介绍到这了,更多相关Python位图切割内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 在Python中利用Into包整洁地进行数据迁移的教程

    在Python中利用Into包整洁地进行数据迁移的教程

    这篇文章主要介绍了在Python中如何利用Into包整洁地进行数据迁移,在数据格式的任意两个格式之间高效地迁移数据,需要的朋友可以参考下
    2015-03-03
  • Python中sorted()用法案例代码

    Python中sorted()用法案例代码

    sorted() 作为 Python 内置函数之一,其功能是对序列(列表、元组、字典、集合、还包括字符串)进行排序,这篇文章主要介绍了Python中sorted()用法,需要的朋友可以参考下
    2023-02-02
  • python高并发异步服务器核心库forkcore使用方法

    python高并发异步服务器核心库forkcore使用方法

    这篇文章主要介绍了python高并发异步服务器核心库forkcore的使用方法,大家参考使用吧
    2013-11-11
  • Python构建一个文档扫描器的实现

    Python构建一个文档扫描器的实现

    本文主要介绍了Python构建一个文档扫描器的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • Python-docx 实现整体修改或者部分修改文字的大小和字体类型

    Python-docx 实现整体修改或者部分修改文字的大小和字体类型

    这篇文章主要介绍了Python-docx 实现整体修改或者部分修改文字的大小和字体类型,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • Python读取Json字典写入Excel表格的方法

    Python读取Json字典写入Excel表格的方法

    这篇文章主要为大家详细介绍了Python读取Json字典写入Excel表格的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • Python配置同花顺全数据接口教程详解

    Python配置同花顺全数据接口教程详解

    这篇文章主要为大家详细介绍了Python配置同花顺全数据接口的教程,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-01-01
  • Python+Turtle制作海龟迷宫小游戏

    Python+Turtle制作海龟迷宫小游戏

    这篇文章主要是带大家写一个利用Turtle库制作的一款海龟闯关的三大迷宫,文中的示例代码讲解详细,对我们学习Python有一定帮助,感兴趣的可以了解一下
    2022-04-04
  • Pyhton自动化测试持续集成和Jenkins

    Pyhton自动化测试持续集成和Jenkins

    这篇文章介绍了Pyhton自动化测试持续集成和Jenkins,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2022-07-07
  • python安装virtualenv虚拟环境步骤图文详解

    python安装virtualenv虚拟环境步骤图文详解

    这篇文章主要介绍了python安装virtualenv虚拟环境步骤,本文通过图文并茂的形式给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-09-09

最新评论