Python灰度变换中灰度切割分析实现

 更新时间:2022年10月19日 08:31:43   作者:Henry_zs  
灰度变换是指根据某种目标条件按一定变换关系逐点改变源图像中每个像素灰度值的方法。目的是改善画质,使图像显示效果更加清晰。图像的灰度变换处理是图像增强处理技术中的一种非常基础、直接的空间域图像处理方法,也是图像数字化软件和图像显示软件的一个重要组成部分

1. 介绍

灰度切割:增强特定范围的对比度,突出图像中特定范围的亮度(灰度级分层也叫灰度切割)

实现灰度切割的方法有很多种,但基本的方法就两种,其余的方法都是这两个方法的变体

  • 将感兴趣范围内的灰度值全部映射成为一个值(如白色),将其余的灰度值显示为另一个颜色(如黑色),产生一个二值图像
  • 将感兴趣的灰度值变亮,保持其余的灰度值不变

对应的映射函数为:

灰度切割的特殊使用:阈值处理

将感兴趣的物体从背景中分离出来,也叫二值化处理,是第一种方法的变体

2. 灰度切割代码实现

这次没有采用for循环的方式去遍历每个像素点

x[:,:] > a 代表x所有行所有列中大于a的点的位置会为True,再将结果传入自身的坐标中就能找到满足两个阈值中间的点,将这些点替换为255即可

import cv2
import numpy as np
def transform1(x):
    a , b = 150 , 240    #  定义两个阈值,中间部分变换为255
    dst = x.copy()
    dst[(x[:,:] >= a) & (x[:,:] <= b)] = 255        # 中间变换为255
    dst[(x[:,:] <  a) | (x[:,:] >  b)] = 0          # 其余的变换为0
    return dst
def transform2(x):
    a , b = 150 , 240    #  定义两个阈值,中间部分变换为255
    dst = x.copy()
    dst[(x[:,:] >= a) & (x[:,:] <= b)] = 255     # 中间变换255,其余的不变
    return dst
gray = cv2.imread('./img.png',0)
dst1 = transform1(gray)
dst2 = transform2(gray)
cv2.imshow('img',np.hstack((gray,dst1,dst2)))
cv2.waitKey()
cv2.destroyAllWindows()

输出结果

3. 阈值处理

灰度切割的特殊使用是阈值处理,opencv中包含了threshold函数对图像进行阈值处理

语法如下:retval,dst = cv2.threshold(src , thresh , maxval , type)

ret val(return value):处理时采用的阈值大小

dst :处理后的图像

src : 处理前的图像

maxval(max val):产生二值图像后,阈值处理后输出的值,另一个默认是0。例如小于150的输出0,其余的就是这个maxval(一般是255)

type : 阈值处理的类型,有如下的几种类型

type含义
cv2.THRESH_BINARY二值化阈值处理:超出thresh,为255;否则为0
cv2.THRESH_BINARY_INV反二值化阈值处理:超出thresh,为0;否则为255
cv2.THRESH_TOZERO低于阈值零处理:低于thresh,为0;否则灰度值不变
cv2.THRESH_TOZERO_INV 超出阈值零处理:低于thresh,为255;否则为0
cv2.THRESH_TRUNC(truncate截断)截断阈值处理:超过thresh,为thresh;否则不变

代码:

import cv2
import numpy as np
a = np.arange(0,256).reshape(1,-1).astype(np.uint8) # 0-255
img = cv2.resize(a,(800,100),interpolation=cv2.INTER_AREA)    #  创建渐变图像
ret1,img1 = cv2.threshold(img,200,255,cv2.THRESH_BINARY) # 二值化阈值处理
ret2,img2 = cv2.threshold(img,200,255,cv2.THRESH_BINARY_INV) # 反二值化阈值处理
ret3,img3 = cv2.threshold(img,200,255,cv2.THRESH_TOZERO) # 低于阈值零处理
ret4,img4 = cv2.threshold(img,200,255,cv2.THRESH_TOZERO_INV) # 超出阈值零处理
ret5,img5 = cv2.threshold(img,200,255,cv2.THRESH_TRUNC) # 截断阈值处理
cv2.imshow('img',np.vstack((img,img1,img2,img3,img4,img5)))
cv2.waitKey()
cv2.destroyAllWindows()

处理结果:

到此这篇关于Python灰度变换中灰度切割分析实现的文章就介绍到这了,更多相关Python灰度切割内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python中matplotlib实现最小二乘法拟合的过程详解

    python中matplotlib实现最小二乘法拟合的过程详解

    这篇文章主要给大家介绍了关于python中matplotlib实现最小二乘法拟合的相关资料,文中通过示例代码详细介绍了关于最小二乘法拟合直线和最小二乘法拟合曲线的实现过程,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-07-07
  • OpenCv实现绘图功能

    OpenCv实现绘图功能

    这篇文章主要为大家详细介绍了OpenCv实现绘图功能,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-05-05
  • 总结Python连接CS2000的详细步骤

    总结Python连接CS2000的详细步骤

    今天给大家带来的是关于Python的相关知识,文章围绕着Python连接CS2000的详细步骤展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
    2021-06-06
  • 解决python中使用PYQT时中文乱码问题

    解决python中使用PYQT时中文乱码问题

    今天小编就为大家分享一篇解决python中使用PYQT时中文乱码问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • Python命名空间及作用域原理实例解析

    Python命名空间及作用域原理实例解析

    这篇文章主要介绍了Python命名空间及作用域原理实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-08-08
  • python配置虚拟环境步骤

    python配置虚拟环境步骤

    大家好,本篇文章主要讲的是python配置虚拟环境步骤,感兴趣的同学赶快来看一看,对你有帮助的话记得收藏一下,方便下次浏览
    2021-12-12
  • Pytest mark使用实例及原理解析

    Pytest mark使用实例及原理解析

    这篇文章主要介绍了Pytest mark使用实例及原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Python通过30秒就能学会的漂亮短程序代码(过程全解)

    Python通过30秒就能学会的漂亮短程序代码(过程全解)

    这篇文章主要介绍了Python之30秒就能学会的漂亮短程序代码,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-10-10
  • Python实现数据结构线性链表(单链表)算法示例

    Python实现数据结构线性链表(单链表)算法示例

    这篇文章主要介绍了Python实现数据结构线性链表(单链表)算法,结合实例形式分析了Python单链表的定义、节点插入、删除、打印等相关操作技巧,需要的朋友可以参考下
    2019-05-05
  • Pytest之测试命名规则的使用

    Pytest之测试命名规则的使用

    这篇文章主要介绍了Pytest之测试命名规则的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04

最新评论