Python OpenCV实现基于模板的图像拼接

 更新时间:2022年10月25日 08:50:29   作者:天人合一peng  
基于特征点的图像拼接如果是多张图,每次计算变换矩阵,都有误差,最后可以图像拼完就变形很大,基于模板的方法可以很好的解决这一问题,本文就来和大家具体聊聊

之前基于特征点的图像拼接如果是多张图,每次计算变换矩阵,都有误差,最后可以图像拼完就变形很大,基于模板的方法可以很好的解决这一问题。

import cv2
import numpy as np
 
 
 
def matchStitch(imageLeft, imageRight):
 
    ImageLeft_gray = cv2.cvtColor(imageLeft,cv2.COLOR_BGR2GRAY)
    ImageRight_gray = cv2.cvtColor(imageRight,cv2.COLOR_BGR2GRAY)
 
    # cv2.imshow("gray", ImageLeft_gray)
    # cv2.waitKey()
 
    # 获取图像长宽
    height_Left, width_left = ImageLeft_gray.shape[:2]
    height_Right, width_Right = ImageRight_gray.shape[:2]
 
    # 模板区域
    left_width_begin = int(3*width_left/4)
    left_height_begin = 0
    template_left = imageLeft[left_height_begin:int(height_Left/2), left_width_begin: width_left]
    drawLeftRect = imageLeft.copy()
    cv2.rectangle(drawLeftRect, (left_width_begin, left_height_begin), (width_left, int(height_Left/2) ), (0, 0, 255), 1)
 
    cv2.imshow("template_left", drawLeftRect)
    # cv2.waitKey()
    # 右边匹配区域
    match_right = imageRight[0:height_Right, 0: int(2*width_Right/3)]
    # cv2.imshow("match_right", match_right)
    # cv2.waitKey()
 
    # 执行模板匹配,采用的匹配方式cv2.TM_CCOEFF_NORMED
    matchResult = cv2.matchTemplate(match_right, template_left, cv2.TM_CCOEFF_NORMED)
    # 归一化处理
    cv2.normalize( matchResult, matchResult, 0, 1, cv2.NORM_MINMAX, -1 )
    # 寻找矩阵(一维数组当做向量,用Mat定义)中的最大值和最小值的匹配结果及其位置
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(matchResult)
 
 
    # 设置最终图片大小
    dstStitch = np.zeros((height_Left, width_Right + left_width_begin - max_loc[0] , 3), imageLeft.dtype)
    # imageLeft.dtype
    # print(imageLeft.dtype)
    height_dst, width_dst = dstStitch.shape[:2]
    # copy left image
    dstStitch[0:height_Left, 0:width_left] = imageLeft.copy()
    # cv2.imshow("src", dstStitch)
 
    # 匹配右图的高要能和目标区域一样
    matchRight_H = height_Right - max_loc[1] + left_height_begin
    dst_y_start = 0
 
    if height_dst == matchRight_H:
        matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
    elif height_dst < matchRight_H:
        matchRight = imageRight[max_loc[1] - left_height_begin: height_Right - 1, max_loc[0]:width_Right]
    else:
        matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
        dst_y_start = height_dst - matchRight_H
 
    # copy right image
    # matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right]
 
    drawRightRect = imageRight.copy()
    h, w = template_left.shape[:2]
    cv2.rectangle(drawRightRect, (max_loc[0],max_loc[1]), (max_loc[0] + w, max_loc[1] + h ), (0, 0, 255), 1)
    #
    cv2.imshow("drawRightRect", drawRightRect)
    # cv2.imshow("matchRight", matchRight)
 
    # print("height_Right   " + str(height_Right - max_loc[1] + left_height_begin))
    # print("matchRight" + str(matchRight.shape))
 
 
    height_mr, width_mr = matchRight.shape[:2]
    # print("dstStitch" + str(dstStitch.shape))
    dstStitch[dst_y_start:height_dst, left_width_begin:width_mr + left_width_begin] = matchRight.copy()
 
    # # 图像融合处理相图相交的地方 效果不好
    # for i in range(0, height_dst):
    #     # if i + winHeight > height:
    #     #     i_heiht = True
    #     for j in range(0, width_dst):
    #         if j == left_width_begin:
    #
    #             j += 1
    #             (b1, g1, r1) = dstStitch[i, j]
    #             j -= 1
    #
    #             dstStitch[i, j] = (b1, g1, r1)
 
 
    # cv2.imwrite("fineFlower04.jpg", dstStitch)
 
    cv2.imshow("dstStitch", dstStitch)
    cv2.waitKey()
 
 
 
 
 
if __name__ == "__main__":
 
    # imageLeft = cv2.imread("Images/Scan/2.jpg")
    # imageRight = cv2.imread("Images/Scan/3.jpg")
 
    imageLeft = cv2.imread("Images/Scan/flower05.jpg")
    imageRight = cv2.imread("Images/Scan/flower06.jpg")
    if imageLeft is None or imageRight is None:
        print("NOTICE: No images")
    else:
        # cv2.imshow("image", imageLeft)
        # cv2.waitKey()
        matchStitch(imageLeft, imageRight)

计算时需要注意的是模板区域一定要在拼接的左右两张图中都有,如果疏忽导致左图中模板较大,而右较中选的区域没有完整的模型就接错了。

# 右边匹配区域
match_right = imageRight[0:height_Right, 0: int(width_Right/2)]

右边先一半,一部分模板的不在里面了,就会拼的效果不好

边缘的区域还有改进的地方,后面有空再写。

到此这篇关于Python OpenCV实现基于模板的图像拼接的文章就介绍到这了,更多相关Python OpenCV图像拼接内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python爬虫scrapy图书分类实例讲解

    python爬虫scrapy图书分类实例讲解

    在本篇内容里小编给大家整理的是一篇关于python爬虫scrapy图书分类实例讲解内容,需要的朋友们可以参考下。
    2020-11-11
  • 童年回忆录之python版4399吃豆豆小游戏

    童年回忆录之python版4399吃豆豆小游戏

    相信80,90后都玩过4399网站的小游戏,虽然游戏很low但是童年的回忆,今天小编带你一起用python自己写一个4399吃豆豆的小游戏,文中给大家介绍的非常详细,对大家的学习或工作具有一定的价值
    2021-09-09
  • matplotlib绘制多子图共享鼠标光标的方法示例

    matplotlib绘制多子图共享鼠标光标的方法示例

    这篇文章主要介绍了matplotlib绘制多子图共享鼠标光标的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • Python深度学习之Unet 语义分割模型(Keras)

    Python深度学习之Unet 语义分割模型(Keras)

    这篇文章主要介绍了语义分割任务中Unet一个有意思的模型-Keras。Keras是一个由Python编写的开源人工神经网络库,可进行深度学习模型的设计、调试、评估、应用和可视化。感兴趣的小伙伴快来跟随小编一起学习一下吧
    2021-12-12
  • 用Python解析XML的几种常见方法的介绍

    用Python解析XML的几种常见方法的介绍

    这篇文章主要介绍了用Python解析XML的几种常见方法,包括快速的使用ElementTree模块等方法的实例介绍,需要的朋友可以参考下
    2015-04-04
  • 简单利用conda安装tensorflow-gpu=2.2.0的过程及问题解决

    简单利用conda安装tensorflow-gpu=2.2.0的过程及问题解决

    这篇文章主要介绍了简单利用conda安装tensorflow-gpu=2.2.0,本文给大家详细分享问题记录及错误问题解决方案,需要的朋友可以参考下
    2023-01-01
  • openstack中的rpc远程调用的方法

    openstack中的rpc远程调用的方法

    今天通过本文给大家分享openstack中的rpc远程调用的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧
    2021-07-07
  • Python sep参数使用方法详解

    Python sep参数使用方法详解

    这篇文章主要介绍了Python sep参数使用方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Python数据清洗工具之Numpy的基本操作

    Python数据清洗工具之Numpy的基本操作

    Numpy的操作对象是一个ndarray,所以在使用这个库进行计算的时候需要将数据进行转化,这篇文章主要介绍了Python数据清洗工具之Numpy的基本操作,需要的朋友可以参考下
    2021-04-04
  • Python 利用OpenCV给照片换底色的示例代码

    Python 利用OpenCV给照片换底色的示例代码

    这篇文章主要介绍了Python 利用OpenCV给照片换底色,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-08-08

最新评论